Home > Members > Profile of Arif Md. Rashedul Kabir

Profile of Arif Md. Rashedul Kabir

kabir

Dr. Arif Md. Rashedul Kabir
Lecturer
Material Chemistry Laboratory
Department of Chemistry, Hokkaido University
Science Building No.-7, Room No.-215
North 10, West 8, North Ward, Sapporo 060-0810
Hokkaido, Japan
E-mail: kabir@sci.hokudai.ac.jp; amrkabir@yahoo.com
Telephone and Fax: 011-706-3474

Personal

  • Date of birth: XX July, 1982
  • Birthplace: Dhaka, Bangladesh
  • Nationality: Bangladeshi

Education

  • June, 1997: S.S.C, Ideal School and College, Motijheel, Dhaka, Bangladesh
  • June, 1999: H.S.C, Dhaka College, Dhaka, Bangladesh
  • June, 2006: B.Sc., Department of Chemistry, University of Dhaka, Bangladesh
  • June, 2008: M.S., Department of Chemistry, University of Dhaka, Bangladesh
  • September, 2012: Doctor of Philosophy (Ph.D.), Department of Biological Sciences, Hokkaido University, Japan (Supervisor: Prof. Jian Ping Gong)

Professional Appointments

  • September, 2008-January, 2009: Assistant Manager, BASF
  • January, 2013-September, 2016: Postdoctoral Fellow, Hokkaido University
  • October, 2016-May, 2022: Assistant Professor, Hokkaido University
  • June, 2022-To date: Lecturer, Hokkaido University

Field of Studies and Research Interests

  • Bioengineering
  • Biotechnology
  • Biophysics
  • Biomechanics
  • Biochemistry
  • Biomedical engineering
  • Cell biology
  • Chemical biology
  • Molecular robotics
  • Soft robotics
  • Active matters and self-organization

Membership in Academic Societies

  • The Biophysical Society of Canada
  • The Australian Society for Biophysics
  • The Society of Polymer Science Japan
  • The Biophysical Society of Japan
  • Bangladesh Chemical Society

List of Publications

  1. Dynamic pattern formation of active matters triggered by mechanical stimuli.
    • Jakia Jannat Keya, Mousumi Akter, Arif Md. Rashedul Kabir, and Akira Kakugo.
    • Microtubules- Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2021 , DOI: XXXXXXXXX, (accepted).
  2. Construction of molecular robots from microtubules for programmable swarming.
    • Jakia Jannat Keya, Mousumi Akter, Arif Md. Rashedul Kabir, Mst. Rubaya Rashid, and Akira Kakugo.
    • Microtubules- Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2021 , DOI: XXXXXXXXX, (accepted).
  3. Fabrication of artificial muscle from microtubules, kinesins and DNA origami nanostructures.
    • Jakia Jannat Keya, Mousumi Akter, Arif Md. Rashedul Kabir, Satsuki Ishii, and Akira Kakugo.
    • Microtubules- Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2021 , DOI: XXXXXXXXX, (accepted).
  4. Functionalization of tubulin: approaches to modify tubulin with biotin and DNA.
    • Mousumi Akter, Jakia Jannat Keya, Arif Md. Rashedul Kabir, Mst. Rubaya Rashid, Satsuki Ishii, and Akira Kakugo.
    • Microtubules- Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2021 , DOI: XXXXXXXXX, (accepted).
  5. Cargo transport by microtubule-associated motor protein along mechanically deformed microtubules.
    • Syeda Rubaiya Nasrin, Arif Md. Rashedul Kabir, and Akira Kakugo.
    • Microtubules- Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2021 , DOI: XXXXXXXXX, (accepted).
  6. Mechanical deformation of microtubules on a two-dimensional elastic medium.
    • Syeda Rubaiya Nasrin, Farhana Afroze, Arif Md. Rashedul Kabir, and Akira Kakugo.
    • Microtubules- Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2021 , DOI: XXXXXXXXX, (accepted).
  7. Biomolecular motor-based computing.
    • Arif Md. Rashedul Kabir, and Akira Kakugo.
    • Handbook of Unconventional Computing, World Scientific Publishing Company, 2022, Chapter 15, 451-464 ; DOI: XXXXXXXXX, (accepted).
  8. Molecular actuators and their applications in molecular robotics.
    • Arif Md. Rashedul Kabir, Yoshiyuki Kageyama, and Akira Kakugo.
    • Encyclopedia of Robotics, 2023, Springer-Verlag GmbH, DE, Heidelberger Platz 3, 14197 Berlin, Germany; DOI: XXXXXXXXX, (accepted).
  9. Monopolar flocking of microtubules in collective motion.
    • Farhana Afroze, Daisuke Inoue, Tamanna Ishrat Farhana, Tetsuya Hiraiwa, Ryo Akiyama, Arif Md. Rashedul Kabir, Kazuki Sada, and Akira Kakugo.
    • Biochemical and Biophysical Research Communications (BBRC), 2021, 563, 73-78; DOI: 10.1016/j.bbrc.2021.05.037.
  10. A new approach to explore the mechanoresponsiveness of microtubules and its application in studying dynamic soft interfaces.
    • Arif Md. Rashedul Kabir, and Akira Kakugo.
    • Polymer Journal, 2021, 53, 299-308; DOI: 10.1038/s41428-020-00415-5.
  11. Controlling the length of self-assembled microtubes through mechanical stress-induced scission.
    • Arif Md. Rashedul Kabir, Kazuki Sada, and Akira Kakugo.
    • Chemical Communications, 2021, 4, 468-471; DOI: 10.1039/D0CC07327J.
  12. Mono-polar clustering of self-propelled particles through left-right asymmetry.
    • Tetsuya Hiraiwa, Ryo Akiyama, Daisuke Inoue, Arif Md. Rashedul Kabir, and Akira Kakugo.
    • arXiv.org, 2021, DOI: arXiv:2101.02130.
  13. Molecular swarm robotics: challenges and prospects for the future.
    • Arif Md. Rashedul Kabir, and Akira Kakugo.
    • ROBOT 100, 2020, DOI: XXXXXXXXX, Eva Dibuszová, Center for Information Services, University of Chemistry and Technology Prague.
  14. Cyclic Tau-derived peptides for stabilization of microtubules.
    • Hiroshi Inaba, Miyuu Nagata, Kyeongmi Juliano Miyake, Arif Md. Rashedul Kabir, Kazuki Sada, Akira Kakugo, and Kazunori Matsuura.
    • Polymer Journal, 2020, 52, 1143-1151; DOI: 10.1038/s41428-020-0356-3.
  15. Comparison of microtubules stabilized with the anticancer drugs cevipabulin and paclitaxel.
    • Syeda Rubaiya Nasrin, Tsukasa Ishihara, Arif Md. Rashedul Kabir, Akihiko Konagaya, Kazuki Sada, and Akira Kakugo.
    • Polymer Journal, 2020, 52, 969-976; DOI: 10.1038/s41428-020-0334-9.
  16. Mechanical stimulation-induced orientation of gliding microtubules in confined microwells.
    • Daisuke Inoue, Arif Md. Rashedul Kabir, Kiyotaka Tokuraku, Kazuki Sada, and Akira Kakugo.
    • Advanced Materials Interfaces, 2020, 7, 1902013; DOI: 10.1002/admi.201902013.
  17. Magnetic force-induced alignment of microtubules by encapsulation of CoPt nanoparticles using a Tau-derived peptide.
    • Hiroshi Inaba, Mayuki Yamada, Mst. Rubaya Rashid, Arif Md. Rashedul Kabir, Akira Kakugo, Kazuki Sada, and Kazunori Matsuura.
    • Nano Letters, 2020, 7, 5251-5258; DOI: 10.1021/acs.nanolett.0c01573.
  18. Effect of microtubule immobilization by glutaraldehyde on kinesin-driven cargo transport.
    • Syeda Rubaiya Nasrin, Arif Md. Rashedul Kabir, Kazuki Sada, and Akira Kakugo.
    • Polymer Journal, 2020, 52, 655-660; DOI: 10.1038/s41428-020-0309-x.
  19. Radial alignment of microtubules through tubulin polymerization in an evaporating droplet.
    • Jakia Jannat Keya, Hiroki Kudoh, Arif Md. Rashedul Kabir, Daisuke Inoue, Nobuyoshi Miyamoto, Tomomi Tani, Akira Kakugo, and Kazuhiro Shikinaka.
    • Plos One, 2020, 4, e0231352; DOI: 10.1371/journal.pone.0231352.
  20. Synchronous operation of biomolecular engines.
    • Jakia Jannat Keya, Arif Md. Rashedul Kabir, and Akira Kakugo.
    • Biophysical Reviews, 2020, 12, 401-409; DOI: 10.1007/s12551-020-00651-2.
  21. Complete, rapid and reversible regulation of the motility of a nano-biomolecular machine using an osmolyte trimethylamine-N-oxide.
    • Tasrina Munmun*, Arif Md. Rashedul Kabir*, Kazuki Sada, and Akira Kakugo (*co-first author).
    • Sensors and Actuators B: Chemical, 2020, 304, 127231; DOI: 10.1016/j.snb.2019.127231.
  22. Breaking of buckled microtubules is mediated by kinesins.
    • Arif Md. Rashedul Kabir*, Kazuki Sada, and Akira Kakugo.
    • Biochemical and Biophysical Research Communications (BBRC), 2020, 524, 249-254; DOI: 10.1016/j.bbrc.2020.01.082.
  23. Regulation of biomolecular-motor-driven cargo transport by microtubules under mechanical stress.
    • Syeda Rubaiya Nasrin, Tanjina Afrin, Arif Md. Rashedul Kabir, Daisuke Inoue, Takayuki Torisawa, Kazuhiro Oiwa, Kazuki Sada, and Akira Kakugo.
    • ACS Applied Bio Materials, 2020, 3, 1875-1883; DOI: 10.1021/acsabm.9b01010.
  24. Complete, rapid and reversible regulation of the motility of a nano-biomolecular machine using an osmolyte trimethylamine-N-oxide.
    • Tasrina Munmun*, Arif Md. Rashedul Kabir*, Kazuki Sada, and Akira Kakugo (*co-first author).
    • Sensors and Actuators B: Chemical, 2020, 304, 127231; DOI: 10.1016/j.snb.2019.127231.
  25. Molecular swarm robots: recent progress and future challenges.
    • Arif Md. Rashedul Kabir, Daisuke Inoue, and Akira kakugo.
    • Science and Technology of Advanced Materials, 2020, 21, 323-332; DOI:10.1080/14686996.2020.1761761.
  26. Photo-regulated trajectories of gliding microtubules conjugated with DNA.
    • Mousumi Akter, Jakia Jannat Keya, Arif Md. Rashedul Kabir, Hiroyuki Asanuma, Keiji Murayama, Kazuki Sada, and Akira kakugo.
    • Chemical Communications, 2020, 56, 7953-7956; DOI: 10.1039/D0CC03124K.
  27. Controlling the kinetics of interaction between microtubules and kinesins over a wide temperature range using the deep-sea osmolyte trimethylamine N-oxide.
    • Tasrina Munmun*, Arif Md. Rashedul Kabir*, Yukiteru Katsumoto, Kazuki Sada, and Akira kakugo.
    • Chemical Communications, 2020, 56, 1187-1190; DOI: 10.1039/C9CC09324A.
  28. Adaptation of patterns of motile filaments under dynamic boundary conditions.
    • Daisuke Inoue, Greg Gutmann, Takahiro Nitta, Arif Md. Rashedul Kabir, Akihiko Konagaya, Kiyotaka Tokuraku, Kazuki Sada, Henry Hess, and Akira kakugo.
    • ACS Nano, 2019, 13, 12452–12460; DOI:10.1021/acsnano.9b01450.
  29. Fluorescent Tau-derived peptide for monitoring microtubules in living cells.
    • Hiroshi Inaba, Takahisa Yamamoto,Takashi Iwasaki, Arif Md. Rashedul Kabir, Akira Kakugo, Kazuki Sada, and Kazunori Matsuura.
    • ACS Omega, 2019, 4, 11245-11250; DOI: 10.1021/acsomega.9b01089.
  30. Stabilization of microtubules by cevipabulin.
    • Syeda Rubaiya Nasrin, Arif Md. Rashedul Kabir, Akihiko Konagaya, Tsukasa Ishihara, Kazuki Sada, and Akira kakugo.
    • Biochemical and Biophysical Research Communications (BBRC), 2019, 516, 760-764; DOI: 10.1016/j.bbrc.2019.06.095.
  31. Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide.
    • Hiroshi Inaba, Takahisa Yamamoto,Takashi Iwasaki, Arif Md. Rashedul Kabir, Akira Kakugo, Kazuki Sada, and Kazunori Matsuura.
    • Chemical Communications, 2019, 55, 99072-9074; DOI: 10.1039/C9CC04345D.
  32. Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures.
    • Kento Matsuda*, Arif Md. Rashedul Kabir*, Naohide Akamatsu, Ai Saito, Shumpei Ishikawa, Tsuyoshi MatsuyamaT, Oliver Ditzer, Md. Sirajul Islam, Yuichi Ohya, Kazuki Sada, Akihiko Konagaya, Akinori Kuzuya, and Akira Kakugo (*co-first author).
    • Nano Letters, 2019, 19, 3933-3938; DOI: 10.1021/acs.nanolett.9b01201
  33. Integration of soft actuators based on a biomolecular motor system to develop artificial machines.
    • Jakia Jannat Keya, Kentaro Kayano, Arif Md. Rashedul Kabir, and Akira kakugo.
    • In Soft Actuators: Materials, Modeling, Applications, and Future Perspectives (2nd edition), 2019, Springer, Singapore, Chapter 39. pp. 691-709; DOI: 10.1007/978-981-13-6850-9_39.
  34. Controlling the length of microtubules by manipulating their polymerization condition.
    • Arif Md. Rashedul Kabir, and Akira kakugo.
    • ECS Transactions, 2018, 88, 15-21; DOI: 10.1149/08801.0015ecst.
  35. Liquid crystalline colloidal mixture of nanosheets and rods with dynamically variable length.
    • Riki Kato, Akira kakugo, Kazuhiro Shikinaka, Yutaka Ohsedo, Arif Md. Rashedul Kabir, and Nobuyoshi Miyamoto.
    • ACS Omega, 2018, 3, 14879-14874; DOI: 10.1021/acsomega.8b01050.
  36. Molecular encapsulation inside microtubules based on tau-derived peptides.
    • Hiroshi Inaba, Takahisa Yamamoto, Arif Md. Rashedul Kabir, Akira Kakugo, Kazuki Sada, and Kazunori Matsuura.
    • Chemistry-A European Journal, 2018; DOI: 10.1002/chem.201802617.
  37. Control of swarming of molecular robots.
    • Jakia Jannat Keya, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki Sada, Henry Hess, Akinori Kuzuya, and Akira kakugo.
    • Scientific Reports, 2018, 8:11756; DOI: 10.1038/s41598-018-30187-1.
  38. Construction of artificial cilia from microtubules and kinesins through a well-designed bottom-up approach.
    • Ren Sasaki*, Arif Md. Rashedul Kabir*, Daisuke Inoue, Shizuka Anan, Atsushi P Kimura, Akihiko Konagaya, Kazuki Sada, and Akira kakugo (*co-first author).
    • Nanoscale, 2018, 10, 6323-6332; DOI: 10.1039/C7NR05099B (Cover Image).
  39. Microrheology of microtubule aqueous solution.
    • Kazutaka Satou, Daisuke Takeuchi, Shuji Fujii, Hiroshi Orihara, Kentaro Kayano, Arif Md. Rashedul Kabir, Ituki Kunita, and Akira kakugo.
    • Biophysical Journal, 2018, 114(3):506a; DOI: 10.1016/j.bpj.2017.11.2765.
  40. Formation of shear band in a microtubule solution.
    • Kei Hamasaki, Daisuke Takeuchi, Shuji Fujii, Hiroshi Orihara, Katsuhiko Satou, Ituki Kunita, Kentaro Kayano, Arif Md. Rashedul Kabir, and Akira kakugo.
    • Biophysical Journal, 2018, 114(3):506a; DOI: 10.1016/j.bpj.2017.11.2766.
  41. DNA-assisted swarm control in a biomolecular motor system.
    • Jakia Jannat Keya, Ryuhei Suzuki, Arif Md. Rashedul Kabir, Daisuke Inoue, Hiroyuki Asanuma, Kazuki Sada, Henry Hess, Akinori Kuzuya, and Akira kakugo.
    • Nature Communications, 2018, 9; DOI: 10.1038/s41467-017-02778-5.
  42. High-resolution imaging of a single gliding protofilament of tubulins by HS-AFM.
    • Jakia Jannat Keya, Daisuke Inoue, Yuki Suzuki, Toshiya Kozai, Daiki Ishikuro, Noriyuki Kodera, Takayuki Uchihashi, Arif Md. Rashedul Kabir, Masayuki Endo, Kazuki sada, and Akira kakugo.
    • Scientific Reports, 2017, 7; DOI: 10.1038/s41598-017-06249-1.
  43. Motility of microtubules on the inner surface of water-in-oil emulsion droplets.
    • Mikako Tsuji, Arif Md. Rashedul Kabir, Masaki Ito, Daisuke Inoue, Kenta Kokado, Kazuki sada, and Akira kakugo.
    • Langmuir, 2017, 33, 12108-12113; DOI: 10.1021/acs.langmuir.7b01550.
  44. Role of confinement in the active self-organization of kinesin driven microtubules.
    • Md. Sirajul Islam, Kaori Kuribayashi-Shigetomi, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki sada, and Akira kakugo.
    • Sensors and Actuators B: Chemical, 2017, 247, 53-60 ; DOI: 10.1016/j.snb.2017.03.006.
  45. Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force.
    • Ai Saito, Tamanna Ishrat Farhana, Arif Md. Rashedul Kabir, Daisuke Inoue, Akihiko Konagaya, Kazuki sada, and Akira kakugo.
    • RSC Advances, 2017, 7, 13191-13197; DOI: 10.1039/c6ra27449h.
  46. Preparation of biomolecular robot.
    • Ryuhei Suzuki, Arif Md. Rashedul Kabir, Kazuki sada, and Akira kakugo.
    • Journal of Oleo Science, 2017, 17, 49-53.
  47. A photoregulated ATP generation system for in vitro motility assay.
    • Arif Md. Rashedul Kabir, Masaki Ito, Kyohei Uenishi, Shizuka Anan, Akihiko Konagaya, Kazuki sada, Miwa Sugiura, and Akira kakugo.
    • Chemistry Letters, 2016, 46, 178-180; DOI: 10.1246/cl.160903.
  48. Sensing surface mechanical deformation using active probes driven by motor proteins.
    • Daisuke Inoue, Takahiro Nitta, Arif Md. Rashedul Kabir, Kazuki Sada, Jian Ping Gong, Akihiko Konagaya, and Akira kakugo.
    • Nature Communications, 2016, 7:12557; DOI: 10.1038/ncomms12557.
  49. Construction and Gilding of Metal-Organic Frameworks and Microtubule Conjugates.
    • Masaki Ito, Takumi Ishiwata, Shizuka Anan, Kenta Kokado, Daisuke Inoue, Arif Md. Rashedul Kabir, Akira KAkugo, and Kazuki Sada.
    • ChemistrySelect, 2016, 16, 5358-5362; DOI: 10.1002/slct.201601431.
  50. Buckling of microtubules on elastic media via breakable bonds.
    • Tanjina Afrin, Arif Md. Rashedul Kabir, Kazuki Sada, Takahiro Nitta, and Akira kakugo.
    • Biochemical and Biophysical Research Communications (BBRC), 2016, DOI: 10.1016/j.bbrc.2016.09.133.
  51. Mechanical oscillation of dynamic microtubule rings.
    • Masaki Ito*, Arif Md. Rashedul Kabir*, Md. Sirajul Islam, Daisuke Inoue, Shoki Wada, Kazuki Sada, Akihiko Konagaya, and Akira kakugo (*co-first author).
    • RSC Advances, 2016, 73, 69149-69155; DOI: 10.1039/c6ra16613j.
  52. Enhanced dynamic instability of microtubules in a ROS free inert environment.
    • Md. Sirajul Islam, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki Sada, and Akira kakugo.
    • Biophysical Chemistry, 2016, 211, 1-8; DOI: 10.1016/j.bpc.2015.11.003.
  53. Buckling of microtubules on a 2D elastic medium.
    • Arif Md. Rashedul Kabir, Daisuke Inoue, Tanjina Afrin, Hiroyuki Mayama, Kazuki Sada, and Akira Kakugo.
    • Scientific Reports, 2015, 5, 1-12; DOI: 10.1038/srep17222.
  54. Depletion force induced collective motion of microtubules driven by kinesin.
    • Daisuke Inoue, Bulbul Mahmot, Arif Md. Rashedul Kabir, Tamanna Ishrat Farhana, Kiyotaka Tokuraku, Kazuki Sada, Akihiko Konagaya, and Akira Kakugo.
    • Nanoscale, 2015, 7, 17983–18346; DOI: 10.1039/c5nr02213d; (Front Cover).
  55. Drag force on micron-sized objects with different surface morphologies in a flow with a small Reynolds number.
    • Arif Md. Rashedul Kabir, Daisuke Inoue, Yuri Kishimoto, Jun-ichi Hotta, Keiji Sasaki, Noboru Kitamura, Jian Ping Gong, Hiroyuki Mayama, and Akira Kakugo.
    • Polymer Journal, 2015, 47, 564-570; DOI:10.1038/pj.2015.29.
  56. Controlling the bias of rotational motion of ring-shaped microtubule assembly.
    • Shoki Wada*, Arif Md. Rashedul Kabir*, Ryuzo Kawamura, Masaki Ito, Daisuke Inoue, Kazuki Sada, and Akira Kakugo (*co-first author).
    • Biomacromolecules, 2015, 16, 374-378; DOI: 10.1021/bm501573v.
  57. Effect of length and rigidity of microtubules on the size of ring-shaped assemblies obtained through active self-organization.
    • Shoki Wada*, Arif Md. Rashedul Kabir*, Masaki Ito, Daisuke Inoue, Kazuki Sada, and Akira Kakugo (*co-first author).
    • Soft Matter, 2015, 11, 1151-1157; DOI: 10.1039/c4sm02292k.
  58. Biomolecular motor modulates mechanical property of microtubule.
    • Arif Md. Rashedul Kabir, Daisuke Inoue, Yoshimi Hamano, Hiroyuki Mayama, Kazuki Sada, and Akira Kakugo.
    • Biomacromolecules, 2014, 15, 1797-1805; DOI: 10.1021/bm5001789.
  59. Formation of ring-shaped microtubule assemblies through active self-organization on dynein.
    • Masaki Ito, Arif Md. Rashedul Kabir, Daisuke Inoue, Takayuki Torisawa, Yoko Toyoshima, Kazuki Sada, and Akira Kakugo.
    • Polymer Journal, 2014, 46, 220-225; DOI: 10.1038/pj.2013.89.
  60. Growth of ring-shaped microtubule assemblies through stepwise active self-organization.
    • Daisuke Inoue, Arif Md. Rashedul Kabir, Hiroyuki Mayama, Akira Kakugo, Kazuki Sada, and Jian Ping Gong.
    • Soft Matter, 2013, 9, 7061-7068; DOI: 10.1039/c3sm50704a.
  61. Formation of ring-shaped assembly of microtubules with a narrow size distribution at an air-buffer interface.
    • Arif Md. Rashedul Kabir, Shoki Wada, Daisuke Inoue, Yoshiki Tamura, Tamaki Kajihara, Hiroyuki Mayama, Kazuki Sada, Akira Kakugo, and Jian Ping Gong.
    • Soft Matter, 2012, 8, 10863-10867; DOI: 10.1039/c2sm26441b; (Front Cover, Hot Paper & Highlighted in Soft Matter Blog as Editor’s Choice).
  62. Active self-organization of microtubules in an inert chamber system.
    • Arif Md. Rashedul Kabir, Daisuke Inoue, Akira Kakugo, Kazuki Sada, and Jian Ping Gong.
    • Polymer Journal, 2012, 44, 607-611; DOI: 10.1038/pj.2012.26.
  63. Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere.
    • Arif Md. Rashedul Kabir, Daisuke Inoue, Akira Kakugo, Akiko Kamei, and Jian Ping Gong.
    • Langmuir, 2011, 27, 13659-13668; DOI: 10.1021/la202467f.
  64. Controlled clockwise-counterclockwise motion of the ring-shaped microtubules assembly.
    • Akira Kakugo, Arif Md. Rashedul Kabir, Natsuki Hosoda, Kazuhiro Shikinaka, and Jian Ping Gong.
    • Biomacromolecules, 2011, 12, 3394-3399; DOI: 10.1021/bm200829t.
  65. Kinetics of the alkaline hydrolysis of crystal violet in aqueous solution influenced by anionic surfactants.
    • Arif Md. Rashedul Kabir, and Md. Abu Bin Hasan Susan.
    • Journal of Saudi Chemical Society, 2008, 12, 543-554.
  66. Study of active self-assembly using biomolecular motors.
    • Arif Md. Rashedul Kabir, and Akira kakugo.
    • Polymer Journal, 2018; DOI: 10.1038/s41428-018-0109-8.
  67. An in vitro system for confinement of microtubules on patterned surface.
    • Md. Sirajul Islam, Kaori Kuribayashi-Shigetomi, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki sada, and Akira kakugo.
    • The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2016, 27 ; DOI: 10.1299/jsmebiofro.2016.27.A205.
  68. Cytoskeletal motor-driven active self-assembly in in vitro systems.
    • Amy Tsui-Chi Lam, Virginia VanDelinder, Arif Md. Rashedul Kabir, Henry Hess, George Bachand, and Akira Kakugo.
    • Soft Matter, 2016, 12, 988-997; DOI: 10.1039/c5sm02042e.
  69. Biomolecular Motor Modulates Mechanical Property of Microtubules.
    • Ren Sasaki, Arif Md. Rashedul Kabir, and Akira Kakugo.
    • Biophysics, 2015, 55, 259-261, DOI: 10.2142/biophys.55.259.
  70. How to integrate biological motors towards bio-actuators fuelled by ATP.
    • Arif Md. Rashedul Kabir, Akira Kakugo, Jian Ping Gong, and Yoshihito Osada.
    • Macromolecular Bioscience, 2011, 11, 1314-1324; DOI:10.1002/mabi.201100060.
  71. Assembly of biomolecular motor obtained through active self-organization and that practicality.
    • Daisuke Inoue, Masaki Ito, Arif Md. Rashedul Kabir, Akira Kakugo, and Kazuki Sada.
    • Chemical Industry, 2012, 63, 449-452.
  72. ATP-driven bio-machine.
    • Daisuke Inoue, Arif Md. Rashedul Kabir, Kazuki Sada, Jian Ping Gong, and Akira Kakugo.
    • In Soft Actuators: Materials, Modeling, Applications, and Future Perspectives (1st edition), 2014, Springer, Japan; DOI: 10.1007/978-4-431-54767-9_34, (Chapter-34; pp. 475-487).
  73. Intelligence of reconstructed biomolecular motor system.
    • Daisuke Inoue, Arif Md. Rashedul Kabir, and Akira Kakugo.
    • Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), 2016, pp. 381-382, DOI: 10.4108/eai.3-12-2015.2262588.
  74. Kinetic investigation on the alkaline hydrolysis of crystal violet in the presence of sodium dodecylbenzenesulfonate.
    • Arif Md. Rashedul Kabir, and Md. Abu Bin Hasan Susan.
    • Proceedings of Bangladesh Chemical Congress, 2006, pp. 89-97.
  75. Study on in vitro lifetime of a biomolecular motor and its extension in an inert chamber system.
    • Arif Md. Rashedul Kabir
    • Ph.D Thesis, Hokkaido University, 2012.

Invited Talks

  1. “Study on in vitro lifetime of a biomolecular motor and its extension in an inert chamber.
    • The Seminar on Supramolecular Systems, Department of Chemistry, University of Dhaka, Bangladesh, 15 November, 2012.
  2. “Inert chamber system opens a new door to employ biomolecular motor protein in nanotechnological applications”.
    • The 29th Summer University in Hokkaido (Organized by SPSJ Hokkaido Branch), Hokkaido, Japan, 29-30 August, 2014.
  3. “In situ observation of mechanical stress induced deformation of microtubule”.
    • The 13th L & M Seminar, Department of Chemistry, Asahikawa Medical University, Hokkaido, Japan, 10 December, 2014.
  4. “Role of surface morphology in the drag force of micron-sized objects”.
    • The Workshop on Molecular Robotics, Hokkaido University, Japan, 23 May 2015.
  5. “Mechano-responsiveness of microtubule and modulation of its biochemical functions”
    • The 65th Annual Meeting of the Japan Society for Analytical Chemistry, Hokkaido University, Japan, 15 September, 2016.
  6. “Inert chamber system opens a new door to employ biomolecular motor protein systems for nanotechnological applications”
    • Open seminar, WPI-NanoLSI, Kanazawa University, Japan, 15 May, 2018.

Grants

  1. Grant name: Grant-In-Aid for Young Scientists (B)
    • Awarding time: March 2016
    • Duration: April 2016-March 2018
    • Funding body: Japan Society for the Promotion of Science (JSPS)
  2. Grant name: The 5th Research Grant
    • Awarding time: November 2018
    • Duration: November 2018-November 2020
    • Funding body: Hirose Foundation
  3. Grant name: The 7th Research Grant
    • Awarding time: November 2020
    • Duration: November 2020-November 2022
    • Funding body: Hirose Foundation
  4. Grant name: Grant-in-Aid for Scientific Research (Transformative Research Areas (A))
    • Awarding time: November 2020
    • Duration: November 2020-March 2025
    • Funding body: Japan Society for the Promotion of Science (JSPS)
  5. Grant name: Grant-In-Aid for Scientific Research (C)
    • Awarding time: April 2021
    • Duration: April 2021-March 2024
    • Funding body: Japan Society for the Promotion of Science (JSPS)

Scholarships

  1. Monbukagakusho (MEXT) scholarship from the Ministry of Education, Culture, Sports, Science and Technology of Japan (October 2009- September, 2012).

Awards

  1. Award for Encouragement of Research in Polymer Science; The Society of Polymer Science, Japan, 2016.
  2. Gold medal winner in BIOMOD 2015, WYSS Institute at Harvard University, USA, November, 2015.
  3. Silver medal winner in BIOMOD 2014, WYSS Institute at Harvard University, USA, November, 2014.
  4. Silver medal winner in BIOMOD 2013, WYSS Institute at Harvard University, USA, November, 2013.

Links