2023: Publication list: 27 件

163Skeletal rearrangement of a boron-containing annulenic molecule into a macrocycle bridged by an electronically stabilized boron cation.,
Y. Murata, O. Cihan, S. Maeda, T. Fukushima, Y. Shoji
Chem. Commun., 2023, 59, 13635-13638.
162An energy decomposition and extrapolation scheme for evaluating electron transfer rate constants: A case study on electron self-exchange reactions of transition metal complexes.,
A. Mutsuji, K. Saita, S. Maeda
RSC Adv., 2023, 13, 32097-32103.
161 Quantum Chemical Calculations for Reaction Prediction in the Development of Synthetic Methodologies.,
H. Hayashi, S. Maeda, T. Mita
Chem. Sci., 2023, 14, 11601-11616.
160A Combined Reaction Path Search and Hybrid Solvation Method for the Systematic Exploration of Elementary Reactions at the Solid–Liquid Interface.,
T. Hasegawa, S.Hagiwara, M.Otani, S. Maeda
J. Phys. Chem. Lett., 2023, 14, 8796-8804.
159An Electron‐Deficient CpE Iridium (III) Catalyst: Synthesis, Characterization, and Application to Ether‐Directed C–H Amidation.,
E.Tomita, M. Kojima, Y.Nagashima, K. Tanaka, H.Sugiyama, Y.Segawa, A.Furukawa, K.Maenaka, S. Maeda, T. Yoshino, S. Matsunaga
Angew. Chem. Int. Edit., 2023, 135, e202301259
158In Situ and Real-Time Visualization of Mechanochemical Damage in Double-Network Hydrogels by Prefluorescent Probe via Oxygen-Relayed Radical Trapping.,
Y.Zheng, J. Jiang, M. Jin, D. Miura, F.X.Lu, K. Kubota, T. Nakajima, S. Maeda, H. Ito, J. P. Gong
J. Am. Chem. Soc., 2023, 13, 7376-7389.
157Early-Stage Formation of the SIFSIX-3-Zn Metal–Organic Framework: An Automated Computational Study.,
B. B. Skjelstad, Y.Hijikata, S. Maeda
Inorg. Chem., 2023, 62, 1069-1286.
156Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox‐Catalyzed Radical Reaction.,
Y. Harabuchi, H. Hayashi, H.Takano, T. Mita, S. Maeda
Angew. Chem. Int. Ed. Engl., 2023, 62
155Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson’s Catalyst Case
R. Staub, P. Gantzer, Y. Harabuchi, S. Maeda, A. Varnek
Molecule, 2023, 28, 4477
154Stereospecific synthesis of silicon-stereogenic optically active silylboranes and general synthesis of chiral silyl Anions
Xihong Wang, Chi Feng, J. Jiang, S. Maeda, K. Kubota, H. Ito
Nat. Commun., 2023, 14, 5561
153Systematic Search for Thermal Decomposition Pathways of Formic Acid on Anatase TiO2 (101) Surface
H. Nabata, S. Maeda
ChemCatChem, 2023, 15, e202300752
152Amino-Ene Click Reaction of Electron-Deficient pi-Conjugated Molecules with Negative Activation Enthalpies
H.Sanematsu, Y. Nagata, M.Takeuchi, A.Takai
Chem. Eur. J., 2023, 29, e202301019
151Microfluidic platform using focused ultrasound passing through hydrophobic meshes with jump availability
Y.koroyasu, T.Nguyen, S.Sasaguri, A.Marzo, I.Ezcurdia, Y. Nagata, T.Yamamoto, N.Nomura, T.Hoshi
PNAS Nexus, 2023, 2
150Diastereoselective Rotaxane Synthesis with Pillar[5]arenes via Co-crystallization and Solid-State Mechanochemical Processes
K. Wada, K.Yasuzawa, S. Fa, Y. Nagata, K. Kato, S. Ohtani, T. Ogoshi
J. Am. Chem. Soc., 2023, 145, 15324-15330.
149Searching Chemical Action and Network (SCAN): Interactive Chemical Reaction Path Network Platform
M.Kuwahara, Y. Harabuchi, S. Maeda, J.Fujima, K. Takahashi
Digital Discovery, 2023, 2, 1104-1111.
148Development of the GRRM Program for Solid and Surface Reaction Analysis
H. Nabata, S. Maeda
Vac. Surf. Sci., 2023, 66, 354-359.
147Synthesis of Cationic Azatriphenylene Derivatives by Electrochemical Intramolecular Pyridination and Characterization of Their Optoelectronic Properties
Y.Ohno, S.Ando, D.Furusho, R.Hifumi, Y. Nagata, I.Tomita, Shinsuke Inagi
Org.Lett., 2023, 25, 3951-3955.
146Virtual Ligand Strategy in Transition Metal Catalysis Toward Highly Efficient Elucidation of Reaction Mechanisms and Computational Catalyst Design
W. Matsuoka, Y. Harabuchi, S. Maeda
ACS Catalysis, 2023, 13, 5697-5711.
145Adaptive Planar Chirality of Pillar[5]arenes Invertible by n‑Alkane Lengths
K. Adachi, S. Fa, K. Wada, K. Kato, S. Ohtani, Y. Nagata, S. Akine, T. Ogoshi
J. Am. Chem. Soc., 2023, 145, 8114-8121.
144Highly chemoselective ligands for Suzuki–Miyaura cross-coupling reaction based on virtual ligand-assisted screening
W. Matsuoka, Y. Harabuchi, Y. Nagata, S. Maeda
Org. Biomol. Chem., 2023, 21, 3132-3142.
143Systematic search for thermal decomposition pathways of formic acid on anatase TiO2 (101) surface
H. Nabata, S. Maeda
ChemRxiv, 2023, Submitted, Preprint is available at ChemRxiv.
142Synthesis of Bicyclo[1.1.1]pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
H.Takano, H.Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita
Angew. Chem. Int. Edit. Engl., 2023, 62, e202303435
141Exploring the Quantum Chemical Energy Landscape with GNN-Guided Artificial Force
A. Nakao, Y. Harabuchi, S. Wada, K. Tsuda
J. Chem. Theory Comput., 2023, 19, 679-1098.
140Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO2 Radical Anion to (Hetero)Aromatics
S. R. Mangaonkar, H. Hayashi, H.Takano, W. Kanna, S. Maeda, T. Mita
ACS Catalysis, 2023, 13, 2482-2488.
139Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method
S. Maeda, Y. Harabuchi, H. Hayashi, T. Mita
Annu. Rev. Phys. Chem., 2023, 74, 287-311.
138TEtraQuinolines: A Missing Link in the Family of Porphyrinoid Macrocycles
W.Xu, Y. Nagata, N.Kumagai
J. Am. Chem. Soc., 2023, 145, 2609-2618.
137Predicting Highly Enantioselective Catalysts Using Tunable Fragment Descriptors
Nobuya.Tsuji, P. Sidorov, Chendan Zhu, Y. Nagata, T. Gimadiev, A. Varnek, Benjamin List
Angew. Chem. Int. Edit., 2023, 62

2022: Publication list: 32 件

136Automated Mechanism Discovery.,
W.M.C.Sameera, Y. Sumiya, B. B. Skjelstad, S. Maeda
ComprehensiveComputationalChemistry, 2022, 4, 454-484.
135Anthraquinodimethane Ring-flip in Sterically Congested Alkenes: Isolation of Isomer and Elucidation of Intermediate through Experimental and Theoretical Approach.,
Y. Ishigaki, T.Tadokoro, Y. Harabuchi, Y. Hayashi, S. Maeda, T. Suzuki
Bull. Chem. Soc. Jpn., 2022, 95, 38-46.
134A dataset of computational reaction barriers for the Claisen rearrangement: Chemical and numerical analysis.
H. Okada, S. Maeda
Mol. Infom., 2022, 41
133Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets
T. Mita, H.Takano, H. Hayashi, W. Kanna, Y. Harabuchi, K. N. Houk, S. Maeda
J. Am. Chem. Soc., 2022, 144, 22985-23000.
132A theory-driven synthesis of symmetric and unsymmetric 1,2-bis(diphenylphosphino)ethane analogues via radical difunctionalization of ethylene
H.Takano, H.Katsuyama, H. Hayashi, W. Kanna, Y. Harabuchi, S. Maeda, T. Mita
Nat. Commun., 2022, 13, 7034
131Theoretical Investigation of Knowles Hydroamination Based on Systematic Exploration of Oxidation/Reduction Pathways for Photoredox-Catalyzed Radical Process
Y. Harabuchi, H. Hayashi, H.Takano, T. Mita, S. Maeda
Angew. Chem. Int. Ed. Engl., 2022, 62, e202211936
130On accelerating reaction optimization using computational Gibbs energy barriers: A numerical consideration utilizing a computational dataset
H. Okada, S. Maeda
ChemRxiv, 2022, Submitted, Preprint is available at ChemRxiv.
129Oxyl Character and Methane Hydroxylation Mechanism in Heterometallic M(O)Co3O4 Cubanes (M = Cr, Mn, Fe, Mo, Tc, Ru, and Rh)
B. B. Skjelstad, T. Helgaker, S. Maeda, D. Balcells
Acs Catalysis, 2022, 12
128Delayed fluorescence from inverted singlet and triplet excited states
N. Aizawa, Y.-J. Pu, Y. Harabuchi, A. Nihonyanagi, R. Ibuka, H. Inuzuka, B. Dhara, Y. Koyama, K. Nakayama, S. Maeda, F. Araoka, D. Miyajima
Nature, 2022, 609, 502-506.
127Designing Catalyst Descriptors for Machine Learning in Oxidative Coupling of Methane
S. Ishioka, A. Fujiwara, S.Nakanowatari, L. Takahashi, T.Taniike, K. Takahashi
Acs Catalysis, 2022, 12, 11541-11546.
126Theoretical Study of Carbon Isotope Effects in the Nonclassical Carbonyl Cation CO/[M(CO)n]+ (M = Cu, Ag, Au; n = 1-4)
Y. Ono, T. Tsutsumi, Y. Harabuchi, T. Taketsugu
Chem. Phys. Lett., 2022, 806, 140008
125Synthesis of Heterogeneous Catalysts in Catalyst Informatics to Bridge Experiment and High-Throughput Calculation
K. Takahashi, L. Takahashi, S.D.L, T.Kinoshita, S. Nishimura, J. Ohyama
J. Am. Chem. Soc., 2022, 144, 34-15735.
124In silico reaction screening with difluorocarbene for N-difluoroalkylative dearomatization of pyridines
H. Hayashi, H.Katsuyama, H.Takano, Y. Harabuchi, S. Maeda, T. Mita
Nat. Synth., 2022
123Mechanochemically Generated Calcium‐Based Heavy Grignard Reagents and Their Application to Carbon–Carbon Bond‐Forming Reactions
P. Gao, J. Jiang, S. Maeda, K. Kubota, H. Ito
Angew. Chem. Int. Ed. Engl., 2022, 61, e202207118
122An energy decomposition and extrapolation scheme for evaluating electron transfer rate constants: A case study on electron self-exchange reactions of transition metal complexes
A. Mutsuji, K. Saita, S. Maeda
ChemRxiv, 2022, Submitted, Preprint is available at ChemRxiv.
121Multistructural microiteration combined with QM/MM-ONIOM electrostatic embedding
K. Suzuki, S. Maeda
Phys. Chem. Chem. Phys., 2022, 24, 16762-16773.
120Designing transformer oil immersion cooling servers for machine learning and first principle calculations
K. Takahashi, I. Miyazato, S. Maeda, L. Takahashi
PLOS ONE, 2022, 17, 5-e0266880.
119Synthesis of Symmetric/Unsymmetric DPPE Derivatives via the Radical Difunctionalization of Ethylene: A Theory-Driven Approach
H.Takano, H.Katsuyama, H. Hayashi, W. Kanna, Y. Harabuchi, S. Maeda, T. Mita
ChemRxiv, 2022, Submitted, Preprint is available at ChemRxiv.
118Quantum Chemical Calculations to Trace Back Reaction Paths for the Prediction of Reactants
Y. Sumiya, Y. Harabuchi, Y. Nagata, S. Maeda
JACS Au, 2022, 2, 1181-1188.
117Machine Learning-Aided Catalyst Modification in Oxidative Coupling of Methane via Manganese Promoter
S. Nishimura, J. Ohyama, X. Li, I. Miyazato, T.Taniike, K. Takahashi
Ind. Eng. Chem. Res., 2022
116Enhancement of the mechanical and thermal transport properties of carbon nanotube yarns by boundary structure modulation
R.Shikata, H. Suzuki, Y.Hayashi, T. Hasegawa, Y. Shigeeda, H. Inoue, W. Yajima, J. Kametaka, M. Maetani, Y. Tanaka, T. Nishikawa, S. Maeda, Y. Hayashi, M. Hada
Nanotechnology, 2022, 33, 235707
115Leveraging Algorithmic Search in Quantum Chemical Reaction Path Finding
A. Nakao, Y. Harabuchi, S. Maeda, K. Tsuda
Phys. Chem. Chem. Phys., 2022, 24, 10305-10310.
114Virtual Ligand-Assisted Screening Strategy to Discover Enabling Ligands for Transition Metal Catalysis
W.Matsuoka, Y. Harabuchi, S. Maeda
ACS Catalysis, 2022, 12, 3752-3695.
113Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials
Y.You, W. Kanna, H.Takano, H. Hayashi, S. Maeda, T. Mita
J. Am. Chem. Soc., 2022, 144, 3685-3695.
112Azo-Crosslinked Double-Network Hydrogels Enabling Highly Efficient Mechanoradical Generation
Z. J. Wang, J. Jiang, Q. Mu, S. Maeda, T. Nakajima, J. P. Gong
J. Am. Chem. Soc., 2022, 144, 3154-3161.
111High-Throughput Screening and Literature Data Driven Machine Learning Assisting Investigation of Multi-component La2O3-based Catalysts for Oxidative Coupling of Methane
S. Nishimura, S.D.L, I. Miyazato, J.Fujima, T.Taniike, J. Ohyama, K. Takahashi
Catal. Sci. Technol., 2022
110Relationships among the Catalytic Performance, Redox Activity, and Structure of Cu-CHA Catalysts for the Direct Oxidation of Methane to Methanol Investigated Using In Situ XAFS and UV–Vis Spectroscopies
J. Ohyama, Y. Tsuchimura, A.Hirayama, H. Iwai, H. Yoshida, M. Machida, S. Nishimura, K. Kato, K. Takahashi
Acs Catalysis, 2022, 12, 2454-2462.
109Selective Oxidation of Methane to Formaldehyde over a Silica-Supported Cobalt Single-Atom Catalyst
J. Ohyama, D. Abe, A.Hirayama, H. Iwai, Y. Tsuchimura, K.Sakamoto, M. Irikura, Y. Nakamura, H. Yoshida, M. Machida, S. Nishimura, T. Yamamoto, S. Matsumura, K. Takahashi
J. Phys. Chem. C, 2022, 126, 1785-1792.
108Selecting molecules with diverse structures and properties by maximizing submodular functions of descriptors learned with graph neural networks
T. Nakamura, S. Sakaue, K. Fujii, Y. Harabuchi, S. Maeda, S. Iwata
Sci. Rep, 2022, 12, 1124
107Kinetic Analysis of a Reaction Path Network Including Ambimodal Transition States: A Case Study of an Intramolecular Diels–Alder Reaction
T. Ito, S. Maeda, Y. Harabuchi
J. Chem. Theory Comput., 2022
106Preparative-scale Synthesis of Nonacene
A. Jančařík, J. Holec, Y. Nagata, M. Šámal, A. Gourdon
Nat. Commun., 2022, 13, 223
105Designing two-dimensional dodecagonal boron nitride
H. Suzuki, I. Miyazato, T. Hussian, F. Ersan, S. Maeda, K. Takahashi
CrystEngComm, 2022, 24, 471-474.

2021: Publication list: 39 件

104Reactivity Prediction through Quantum Chemical Calculations
S. Maeda, Y. Harabuchi, T. Hasegawa, K. Suzuki, T. Mita
AsiaChem, 2021, 2, 56-63.
103Mechanochemical synthesis of magnesium-based carbon nucleophiles in air and their use in organic synthesis
R. Takahashi, A. Hu, P. Gao, Y. Gao, Y. Pang, T. Seo, J. Jiang, S. Maeda, H. Takaya, K. Kubota, H. Ito
Nat. Commun., 2021, 12, 6691
102Cyclodextrins with Multiple Pyrenyl Groups: An Approach to Organic Molecules Exhibiting Bright Excimer Circularly Polarized Luminescence
H. Shigemitsu, K. Kawakami, Y. Nagata, R. Kajiwara, S. Yamada, T. Mori, T. Kida
Angew. Chem. Int. Edit., 2021, 61, e202114700
101Factors to influence low-temperature performance of supported Mn–Na2WO4 in oxidative coupling of methane
T.N.Ngyuyen, K.Seenivasan, S.Nakanowatari, P. Mohan, T.T.P.Nhat, S. Nishimura, K. Takahashi, T.Taniike
Mol. Catal., 2021
100Pt(II)-Chiral Diene-Catalyzed Enantioselective Formal [4 + 2] Cycloaddition Initiated by C–C Bond Cleavage and Elucidation of a Pt(II)/(IV) cycle by DFT Calculations
T. Shibata, T. Shibata, S. Nishibe, H.Takano, S. Maeda
Org. Chem. Front. , 2021, 8, 6985 -6991 .
99Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of Ethylene
H.Takano, Y. You, H. Hayashi, Y. Harabuchi, S. Maeda, T. Mita
Acs Omega, 2021, 6, 33846-33854.
98Anthraquinodimethane Ring-flip in Sterically Congested Alkenes: Isolation of Isomer and Elucidation of Intermediate through Experimental and Theoretical Approach
Y. Ishigaki, T. Tadokoro, Y. Harabuchi, Y. Hayashi, S. Maeda, T. Suzuki
Bull. Chem. Soc. Jpn., 2021
97Carboxylation of a Palladacycle Formed via C(sp3)–H Activation: Theory-Driven Reaction Design
W. Kanna, Y. Harabuchi, H.Takano, H. Hayashi, S. Maeda, T. Mita
Chem. Asian J., 2021
96A dataset of computational reaction barriers for the Claisen rearrangement: Chemical and numerical analysis
H. Okada, S. Maeda
Mol. Infom., 2021
95Constructing catalyst knowledge networks from catalyst big data in oxidative coupling of methane for designing catalysts
L. Takahashi, T.N.Ngyuyen, S.Nakanowatari, A. Fujiwara, T.Taniike, K. Takahashi
Chem. Sci., 2021
94Switching the relaxation pathway by steric effects in conjugated dienes
T. Tentaku, R. Atobe, T. Tsutsumi, S. Sato, Y. Harabuchi, T. Taketsugu, T. Sekikawa
J. Phys. Chem. B, 2021
93A reaction route network for methanol decomposition on a Pt(111) surface
K. Sugiyama, K. Saita, S. Maeda
J. Comput. Chem., 2021
92Catalysis Gene Expression Profiling: Sequencing and Designing Catalysts
K. Takahashi, J.Fujima, I. Miyazato, S.Nakanowatari, A. Fujiwara, T.N.Ngyuyen, T.Taniike, L. Takahashi
J. Phys. Chem. Lett., 2021, 12, 7335-7341.
91Pincer-Type Phosphorus Compounds with Boryl-Pendant and Application in Catalytic H-2 Generation from Ammonia-Borane: A Theoretical Study
D. Yang, P. Bao, Z. Yang, Z. Chen, S. Sakaki, S. Maeda, G. X. Zeng
ChemCatChem, 2021, 13
90Quick approach for optimization of monodisperse microsphere synthesis with a knowledge sharing strategy powered by machine learning
X. Zhang, Y. Li, Y. Feng, J. Guo, K. Takahashi, C. Wang
Chem. Phys. Lett., 2021, 780, 139808
89Extraction of catalyst design heuristics from random catalyst dataset and their utilization in catalyst development for oxidative coupling of methane
S.Nakanowatari, T.N.Ngyuyen, H.Chikuma, A. Fujiwara, K.Seenivasan, A.Thakur, L. Takahashi, K. Takahashi, T.Taniike
ChemCatChem, 2021, 21, 3262-3269.
88Catalytic Oxidation of Methane to Methanol over Cu-CHA with Molecular Oxygen
A.Hirayama, Y. Tsuchimura, H. Yoshida, M. Machida, S. Nishimura, K. Kato, K. Takahashi, J. Ohyama
Catal. Sci. Technol., 2021
87Alkali Metal Fluorides in Fluorinated Alcohols: Fundamental Properties and Applications to Electrochemical Fluorination
N. Shida, H. Takenaka, A. Gotou,, T, Isogai, A. Yamauchi, Y. Kishikawa, Y. Nagata, I. Tomita, T. Fuchigami, Shinsuke Inagi
J. Org. Chem., 2021, 86, 16128-16133.
86Mining hydroformylation in complex reaction network via graph theory
K. Takahashi, S. Maeda
RSC Adv., 2021, 11, 23235-23240.
85Synthesis and Absorption Properties of Long Acenoacenes
A. Jančařík, D. Mildner, Y. Nagata, M. Banasiewicz, J. Olas, B. Kozankiewicz, J. Holec, A. Gourdon
Chem.-Eur. J., 2021, 27, 12388-12394 .
84Mechanism of 2,6-Dichloro-4,4’-bipyridine-Catalyzed Diboration of Pyrazines Involving a Bipyridine-Stabilized Boryl Radical
T. Ohmura, Y. Morimasa, T. Ichino, Y. Miyake, Y. Murata, M. Suginome, K. Tajima, T. Taketsugu, S. Maeda
Bull. Chem. Soc. Jpn., 2021
83Unveiling gas‐phase oxidative coupling of methane via data analysis
S. Ishioka, I. Miyazato, L. Takahashi, T.N.Ngyuyen, T.Taniike, K. Takahashi
J. Comput. Chem., 2021, 42, 1447-1451.
82Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force.
S. Maeda, Y. Harabuchi
WIREs Comput. Mol. Sci., 2021, 11, e1538
81Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO2: Computational Design, Scope, and Application
H. Hayashi, H.Takano, H.Katsuyama, Y. Harabuchi, S. Maeda, T. Mita
Chem. Eur. J., 2021
80Observation of Borane–Olefin Proximity Interaction Governing the Structure and Reactivity of Boron‐Containing Macrocycles
Y. Murata, K. Matsunagi, J. Kashida, Y. Shoji, O. Cihan, S. Maeda, T. Fukushima
Angew. Chem. Int. Ed. Engl., 2021
79Non‐adiabatic dynamic of atmospheric unimolecular photochemical reactions of 4,4‐difluoro‐crotonaldehyde using TD‐DFT and TSH approaches
P. J. Castro, S. Maeda, K. Morokuma
Int. J. Quantum Chem., 2021
78Targeted 1,3-dipolar cycloaddition with acrolein for cancer prodrug activation
A. R. Pradipta, P. Ahmadi, K. Terashima, K. Muguruma, M. Fujii, T. Ichino, S. Maeda, K. Tanaka
Chem. Sci., 2021, 12, 5438-5449.
77 Catalytic Direct Oxidation of Methane to Methanol by Redox of Copper Mordenite
J. Ohyama, A.Hirayama, Y. Tsuchimura, N.Kondo, H. Yoshida, M. Machida, S. Nishimura, K. Kato, I. Miyazato, K. Takahashi
Catal. Sci. Technol., 2021
76Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis
Y. Kamei, Y. Seino, Y. Yamaguchi, T. Yoshino, S. Maeda, M. Kojima, S. Matsunaga
Nat. Commun., 2021, 12, 966
75Representing Catalytic and Processing Space in Methane Oxidation Reaction via Multioutput Machine Learning
I. Miyazato, T.N.Ngyuyen, L. Takahashi, T.Taniike, K. Takahashi
J. Phys. Chem. Lett., 2021, 12, 808-814.
74 Combined Graph/Relational Database Management System for Calculated Chemical Reaction Pathway Data
T. Gimadiev, R. Nugmanov, D. Batyrshin, T. Madzhidov, S. Maeda, P. Sidorov, A. Varnek
J. Chem. Inf. Model., 2021, 61, 554-559.
73Combined Graph/Relational Database Management System for Calculated Chemical Reaction Pathway Data
T. Gimadiev, R. Nugmanov, D. Batyrshin, T. Madzhidov, S. Maeda, P. Sidorov, A. Varnek
J. Chem. Inf. Model., 2021, 61, 554-559.
72Data science assisted investigation of catalytically active copper hydrate in zeolites for direct oxidation of methane to methanol using H2O2
J. Ohyama, A.Hirayama, N.Kondo, H. Yoshida, M. Machida, S. Nishimura, K.Hirai, I. Miyazato, K. Takahashi
Sci. Rep, 2021, 11, 2067
71Learning Catalyst Design Based on Bias-Free Data Set for Oxidative Coupling of Methane
T.N.Ngyuyen, S.Nakanowatari, T.T.P.Nhat, A.Thakur, L. Takahashi, K. Takahashi, T.Taniike
Acs Catalysis, 2021, 11, 1797-1809.
70Representing the Methane Oxidation Reaction via Linking First-Principles Calculations and Experiment with Graph Theory
L. Takahashi, J. Ohyama, S. Nishimura, K. Takahashi
J. Phys. Chem. Lett., 2021, 12, 558-568.
69Chemoselective Cleavage of Si−C(sp3) Bonds in Unactivated Tetraalkylsilanes Using Iodine Tris(trifluoroacetate)
K. Matsuoka, N. Konami, M. Kojima, T. Mita, K. Suzuki, S. Maeda, T. Yoshino, S. Matsunaga
J. Am. Chem. Soc., 2021, 143, 103-108.
68Direct Design of Catalysts in Oxidative Coupling of Methane via High‐Throughput Experiment and Deep Learning
K. Sugiyama, T.N.Ngyuyen, S.Nakanowatari, I. Miyazato, T.Taniike, K. Takahashi
ChemCatChem, 2021, 13, 952-957.
67Substitution effect on the nonradiative decay and trans → cis photoisomerization route: a guideline to develop efficient cinnamate-based sunscreens
S. Kinoshita, Y. Harabuchi, Y. Inokuchi, S. Maeda, M. Ehara, K. Yamazaki, T. Ebata
Phys. Chem. Chem. Phys., 2021, 23, 834-845.
66 Direct Design of Active Catalysts for Low Temperature Oxidative Coupling of Methane via Machine Learning and Data Mining
J. Ohyama, T.Kinoshita, E.Funada, H. Yoshida, M. Machida, S. Nishimura, T. Uno, J.Fujima, I. Miyazato, L. Takahashi, K. Takahashi
Catal. Sci. Technol., 2021, 11, 524-530.

2020: Publication list: 26 件

65Revisiting Machine Learning Predictions for Oxidative Coupling of Methane (OCM) based on Literature Data
S. Nishimura, J. Ohyama, T.Kinoshita, S.D.L, K. Takahashi
ChemCatChem, 2020
64Phonon transport probed at carbon nanotube yarn/sheet boundaries by ultrafast structural dynamics
M. Hada, K. Makino, H. Inoue, T. Hasegawa, H. Masuda, K. Shirasu, T. Nakagawa, T. Seki, J. Matsuo, T. Nishikawa, Y. Yamashita, S. Koshihara, V. Stolojan, S. R. P. Silva, J.-i. Fujita, Y. Hayashi, S. Maeda, M. Hase
Carbon, 2020, 170, 165-173.
63Kinetic prediction of reverse intersystem crossing in organic donor–acceptor molecules
N. Aizawa, Y. Harabuchi, S. Maeda, Y.-J. Pu
Nat. Commun., 2020, 11, 3909 (6 pages).
62Chiral lanthanide lumino-glass for a circularly polarized light security device
Y. Kitagawa, S. Wada, M. D. J. Islam, K. Saita, M. Gon, K. Fushimi, K. Tanaka, S. Maeda, Y. Hasegawa
Commun. Chem., 2020, 3, 119 (5 pages).
61Multi-Dimensional Classification of Catalysts in Oxidative Coupling of Methane through Machine Learning and High-Throughput Data
K. Takahashi, L. Takahashi, T.N.Ngyuyen, A.Thakur, T.Taniike
J. Phys. Chem. Lett., 2020, 11, 6819-6826.
60A theoretical study on the alkali metal carboxylate-promoted L-Lactide polymerization
O. Cihan, T. Satoh, S. Maeda
J. Comput. Chem., 2020, 41, 2197-2202.
59Global Search for Crystal Structures of Carbon under High Pressure
M. Takagi, S. Maeda
Acs Omega, 2020, 5, 18142-18147.
58Palladium‐Catalyzed C-H Iodination of Arenes by Means of Sulfinyl Directing Groups
H. Saito, K. Yamamoto, Y. Sumiya, K. Nogi, S. Maeda, H. Yorimitsu
Chem. Asian J., 2020, 15, 2442-2446.
57Transition of wide-band gap semiconductor h-BN(BN)/P heterostructure via single-atom-embedding
I. Miyazato, T. Hussian, K. Takahashi
J. Mater. Chem. C, 2020, 8, 9755-9762.
56AFIR Explorations of Transition States of Extended Unsaturated Systems: Automatic Location of Ambimodal Transition States
T. Ito, Y. Harabuchi, S. Maeda
Phys. Chem. Chem. Phys., 2020, 22, 13942-13950.
55 Computational Searches for Crystal Structures of Dioxides of Group 14 Elements (CO2, SiO2, GeO2) under Ultrahigh Pressure.
H. Nabata, M. Takagi, K. Saita, S. Maeda
RSC Adv., 2020, 10, 22156-22163.
54Ineffective OH‐pinning of the Flipping Dynamics of a Spherical Guest within a Tight‐fitting Tube
T. Matsuno, M. Someya, S. Sato, S. Maeda, H. Isobe
Angew. Chem. Int. Edit., 2020, 59, 14570-14576.
53 Artificial Force Induced Reaction Method for Systematic Elucidation of Mechanism and Selectivity in Organometallic Reactions.
M. Hatanaka, T. Yoshimura, S. Maeda
Top. Organomet. Chem., 2020, 57-80.
52Discovery of a Synthesis Method for a Difluoroglycine Derivative based on a Path Generated by Quantum Chemical Calculations
T. Mita, Y. Harabuchi, S. Maeda
Chem. Sci., 2020, 11, 7569-7577.
51Catalyst Acquisition by Data Science (CADS): a web-based catalyst informatics platform for discovering catalysts
J.Fujima, Y. Tanaka, I. Miyazato, L. Takahashi, K. Takahashi
React. Chem. Eng., 2020, 5, 903-911.
50Migrations and Catalytic Action of Water Molecules in the Ionized Formamide-(H2O) 2
Y. Matsuda, Y. Hirano, S. Mizutani, D. Sakai, A. Fujii, S. Maeda, K. Ohno
J. Phys. Chem. A, 2020, 124, 2802-2807.
49Tuning the hydrogen storage properties of TiFe clusters via Zr substitution
V. Kumar, P. Kumar, S. Pati, P. Sharma, K. Takahashi
Energy Storage, 2020, e157 (9 pages).
48Trajectory on‐the‐fly molecular dynamics approach to tunneling splitting in the electronic excited state: A case of tropolone
Y. Ootani, A. Satoh, Y. Harabuchi, T. Taketsugu
J. Comput. Chem., 2020, 41, 1549-1556.
47Rate Constant Matrix Contraction Method for Systematic Analysis of Reaction Path Networks
Y. Sumiya, S. Maeda
Chem. Lett., 2020, 49, 553-564.
46The Rising Sun Envelope Method: An Automatic and Accurate Peak Location Technique for XANES Measurements
R. Monterio, I. Miyazato, K. Takahashi
J. Phys. Chem. A, 2020, 124, 1754-1762.
45Data-Driven Identification of the Reaction Network in Oxidative Coupling of the Methane Reaction via Experimental Data
I. Miyazato, S. Nishimura, J. Ohyama, K. Takahashi
J. Phys. Chem. Lett., 2020, 11, 787-795.
44First-Principles Design of Cu12shellFecore Core–Shell Clusters Assembled with K3O into Hexameric Rings: Implications for Gas-Storage Materials
K. Takahashi
ACS Appl. Nano Mater., 2020, 3, 55-58.
43High-Throughput Experimentation and Catalyst Informatics for Oxidative Coupling of Methane
T.N.Ngyuyen, T.T.P.Nhat, K.Takimoro, A.Thakur, S. Nishimura, J. Ohyama, I. Miyazato, L. Takahashi, J.Fujima, K. Takahashi, T.Taniike
Acs Catalysis, 2020, 10, 921-932.
42Paths of Chemical Reactions and Their Networks: From Geometry Optimization to Automated Search and Systematic Analysis.
Y. Sumiya, S. Maeda
in "Chemical Modelling: Volume 15 (RSC Specialist Periodical Reports)" ed. by M. Springborg and J.-O. Joswig, Royal Society of Chemistry, 2020, 28-69.
41Fluorescence Enhancement of Aromatic Macrocycles by Lowering Excited Singlet State Energies
K. Ikemoto, T. Tokuhira, A. Uetani, Y. Harabuchi, S. Sato, S. Maeda, H. Isobe
J. Org. Chem., 2020, 85, 150-157.
40Understanding the Acetalization Reaction Based on its Reaction Path Network
Y. Sumiya, Y. Tabata, S. Maeda
ChemSystemsChem, 2020, 2, e190002-1-7.

2019: Publication list: 22 件

39Visualizing Scientists’ Cognitive Representation of Materials Data through the Application of Ontology
L. Takahashi, K. Takahashi
J. Phys. Chem. Lett., 2019, 10, 7482-7491.
38One-Minute Joule Annealing Enhances the Thermoelectric Properties of Carbon Nanotube Yarns via the Formation of Graphene at the Interface
M. Hada, T. Hasegawa, H. Inoue, M. Takagi, K. Omoto, D. Chujo, S. Iemoto, T. Kuroda, T. Morimoto, T. Hayashi, T. Iijima, T. Tokunaga, N. Ikeda, K. Hujimori, C. Itoh, T. Nishikawa, Y. Yamashita, T. kiwa, S. Koshihara, S. Maeda, Y. Hayashi
ACS Appl. Energy Mater. , 2019, 2, 7700-7708.
37Controlling electronic structure of single layered HfX3 (X=S, Se) trichalcogenides through systematic Zr doping
I. Miyazato, S.Sarikurt, K. Takahashi, F. Ersan
J. Mater. Sci., 2019, 55, 660-669.
36Global Reaction Route Mapping Strategy: A Tool for Finding New Chemistry in Computers.
S. Maeda, Y. Harabuchi, K. Saita
in "Molecular Technology, Volume 3: Materials Innovation" ed. by H. Yamamoto and T. Kato, Wiley-VCH, 2019, in press., 173-199.
35Anharmonic Vibrational Computations with a Quartic Force Field for Curvilinear Coordinates
Y. Harabuchi, R. Tani, N. DeSilva, B. Njegic, M. S. Gordon, T. Taketsugu
J. Chem. Phys., 2019, 151, 64104 (9 pages).
34Data Driven Determination in Growth of Silver from Clusters to Nanoparticles and Bulk
K. Takahashi, L. Takahashi
J. Phys. Chem. Lett., 2019, 10, 4063-4068.
33Data Driven Determination of Reaction Conditions in Oxidative Coupling of Methane via Machine Learning
J. Ohyama, S. Nishimura, K. Takahashi
ChemCatChem, 2019, 11, 4307-4313.
32Direct observation of the doorway 1nπ* state of methylcinnamate and hydrogen-bonding effects on the photochemistry of cinnamate-based sunscreens
S. Kinoshita, Y. Inokuchi, Y. Onitsuka, H. Kohguchi, N. Akai, T. Shiraogawa, M. Ehara, K. Yamazaki, Y. Harabuchi, S. Maeda, T. Ebata
Phys. Chem. Chem. Phys., 2019, 21, 19755-19763.
31Automatic oxidation threshold recognition of XAFS data using supervised machine learning
I. Miyazato, L. Takahashi, K. Takahashi
Mol. Syst. Des. Eng. , 2019, 4, 1014-1018.
30Zn(OTf)2-mediated annulations of N-propargylated tetrahydrocarbolines: divergent synthesis of four distinct alkaloidal scaffolds
S. Yorimoto, A. Tsubouchi, H. Mizoguchi, H. Oikawa, Y. Tsunekawa, T. Ichino, S. Maeda, H. Oguri
Chem. Sci., 2019, 10, 5686-5698.
29On Benchmarking of Automated Methods for Performing Exhaustive Reaction Path Search
S. Maeda, Y. Harabuchi
J. Chem. Theory Comput., 2019, 15, 2111-2115.
28Understanding CO oxidation on the Pt(111) surface based on reaction route network
K. Sugiyama, Y. Sumiya, M. Takagi, K. Saita, S. Maeda
Phys. Chem. Chem. Phys., 2019, 21, 14366-14375.
27A Theoretical Study on the Mechanism of the Oxidative Deborylation/C–C Coupling Reaction of Borepin Derivatives
O. Cihan, Y. Shoji, T. Fukushima, S. Maeda
J. Org. Chem., 2019, 84, 1941-1950.
26A Systematic Study on Bond Activation Energies of NO, N₂, and O₂ on Hexamers of Eight Transition Metals
T. Ichino, M. Takagi, S. Maeda
ChemCatChem, 2019, 11, 1346-1353.
25Creating Machine Learning-Driven Material Recipes Based on Crystal Structure
K. Takahashi, L. Takahashi
J. Phys. Chem. Lett., 2019, 10, 283-288.
24Exploring approximate geometries of minimum energy conical intersections by TDDFT calculations
Y. Harabuchi, M. Hatanaka, S. Maeda
Chem. Phys. Lett. X, 2019, 2, 100007 (8 pages).
23Roles of Closed- and Open-loop conformations in Large-scale Structural Transitions of L-Lactate Dehydrogenase
K. Suzuki, S. Maeda, K. Morokuma
ACS Omega, 2019, 4, 1178-1184.
22Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu13
T. Iwasa, T. Sato, M. Takagi, M. Gao, A. Lyalin, M. Kobayashi , K.-i. Shimizu, S. Maeda, T. Taketsugu
J. Phys. Chem. A, 2019, 123, 210-217.
21CO2 Adsorption on Ti3O6-: A Novel Carbonate Binding Motif.
S. Debnath, X. Song, M. R. Fagiani, M. Weichman, M. Gao, S. Maeda, T. Taketsugu, W. Schollkopf, A. Lyalin, D. Neumark, K. R. Asmis
J. Phys. Chem. C, 2019, 123, 8439-8446.
20Femtosecond electronic relaxation and real-time vibrational dynamics in 2’-hydroxychalcon
Y. Yamakita, N. Yokoyama, B. Xue, N. Shiokawa, Y. Harabuchi, S. Maeda, T. Kobayashi
Phys. Chem. Chem. Phys., 2019, 21, 5344-5358 .
19A Reaction Path Network for Wohler's Urea Synthesis
Y. Sumiya, S. Maeda
Chem. Lett., 2019, 48, 47-50.
18Excited State Reactivity of [Mn(imidazole)(CO)3(phen)]+: a structural exploration
M. Fumanal, Y. Harabuchi, E. Gindensperger, S. Maeda, C. Daniel
J. Comput. Chem., 2019, 40, 72-81.

2018: Publication list: 11 件

17Resolving the Excited State Relaxation Dynamics of Guanosine Monomers and Hydrogen-Bonded Homodimers in Chloroform Solution
R. A. Ingle, Gareth M. Roberts, Katharina Röttger, Hugo J. B. Marroux, Frank D. Sönnichsen, M. Yang, Łukasz Szyc, Y. Harabuchi, S. Maeda, Friedrich Temps, A. J. Orr-Ewing
Chem. Phys., 2018, 515, 480-492.
16On-the-fly molecular dynamics study of the excited-state branching reaction of α-methyl-cis-stilbene
T. Tsutsumi, Y. Harabuchi, R. Yamamoto, S. Maeda, T. Taketsugu
Chem. Phys., 2018, 515, 564-571.
15Exploring potential crossing seams in periodic systems: Intersystem crossing pathways in the benzene crystal
K. Saita, M. Takagi, Y. Harabuchi, H. Okada, S. Maeda
J. Chem. Phys., 2018, 149, 072329 (9 pages).
14Designing Backbone of Hexasilabenzene Derivatives Possessing a High Unimolecular Kinetic Stability
Y. Sumiya, S. Maeda
Chem. Eur. J., 2018, 24, 12264-12268.
13Low-energy electrocatalytic CO2 reduction in water over Mn-complex catalyst electrode aided by a nanocarbon support and K+ cations
S. Sato, K. Saita, K. Sekizawa, S. Maeda, T. Morikawa
Acs Catalysis, 2018, 8, 4452-4458.
12Different Photoisomerization Routes Found in the Structural Isomers of Hydroxy Methylcinnamate
S. Kinoshita, Y. Miyazaki, M.Sumida, Y. Onitsuka, H. Kohguchi, Y. Inokuchi, N. Akai, T. Shiraogawa, M. Ehara, K. Yamazaki, Y. Harabuchi, S. Maeda, T. Taketsugu, T. Ebata
Phys. Chem. Chem. Phys., 2018, 20, 17583-17598.
11Time-Dependent Density Functional Theory Study on Higher Low-Lying Excited States of Au25(SR)18–
M. Ebina, T. Iwasa, Y. Harabuchi, T. Taketsugu
J. Phys. Chem. C, 2018, 122, 4097-4104.
10Exploring radiative and nonradiative decay paths in indole, isoindole, quinoline, and isoquinoline
Y. Harabuchi, K. Saita, S. Maeda
Photochem. Photobiol. Sci., 2018, 17, 315-322.
9Global Reaction Route Mapping for Surface Adsorbed Molecules: A Case Study for H2O on Cu(111) Surface
S. Maeda, K. Sugiyama, Y. Sumiya, M. Takagi, K. Saita
Chem. Lett., 2018, 47, 396-399.
8Analyses of trajectory on-the-fly based on the global reaction route map
T. Tsutsumi, Y. Harabuchi, Y. Ono, S. Maeda, T. Taketsugu
Phys. Chem. Chem. Phys., 2018, 20, 1364-1372.
7Implementation and performance of the artificial force induced reaction method in the GRRM17 program
S. Maeda, Y. Harabuchi, M. Takagi, K. Saita, K. Suzuki, T. Ichino, Y. Sumiya, K. Sugiyama, Y. Ono
J. Comput. Chem., 2018, 39, 233-251.

2017: Publication list: 6 件

6Theoretical study of initial reactions of amine (CH 3 ) n NH (3- n ) ( n = 1, 2, 3) with ozone
A. Furuhama, T. Imamura, S. Maeda, T. Taketsugu
Chem. Phys. Lett., 2017, 692, 111-116.
5Excess charge driven dissociative hydrogen adsorption on Ti2O4
X. W. Song, M. R. Fagiani, S. Debnath, M. Gao, S. Maeda, T. Taketsugu, S. Gewinner, W. Schollkopf, K. R. Asmis, A. Lyalin
Phys. Chem. Chem. Phys., 2017, 19, 23154-23161.
4Multistructural microiteration technique for geometry optimization and reaction path calculation in large systems
K. Suzuki, K. Morokuma, S. Maeda
J. Comput. Chem., 2017, 38, 2213-2221.
3Global search for low-lying crystal structures using the artificial force induced reaction method: A case study on carbon
M. Takagi, T. Taketsugu, H. Kino, Y. Tateyama, K. Terakura, S. Maeda
Phys. Rev. B, 2017, 95, 184110 (11 pages).
2An autocatalytic cycle in autoxidation of triethylborane
R. Uematsu, C. Saka, Y. Sumiya, T. Ichino, T. Taketsugu, S. Maeda
Chem. Commun., 2017, 53, 7302-7305.
1Exploring the full catalytic cycle of rhodium(i)-BINAP-catalysed isomerisation of allylic amines: a graph theory approach for path optimisation
T. Yoshimura, S. Maeda, T. Taketsugu, M. Sawamura, K. Morokuma, S. Mori
Chem. Sci., 2017, 8, 4475-4488.

2017: Satoshi Maeda: 4 件

123Transition-Metal-Free Boryl Substitution Using Silylboranes and Alkoxy Bases
E. Yamamoto, S. Maeda, T. Taketsugu, H. Ito
Synlett, 2017, 28, 1258-1267.
122Combined gradient projection/single component artificial force induced reaction (GP/SC-AFIR) method for an efficient search of minimum energy conical intersection (MECI) geometries
Y. Harabuchi, T. Taketsugu, S. Maeda
Chem. Phys. Lett., 2017, 674, 141-145.
121Isomerization in Gold Clusters upon O-2 Adsorption
M. Gao, D. Horita, Y. Ono, A. Lyalin, S. Maeda, T. Taketsugu
J. Phys. Chem. C, 2017, 121, 2661-2668.
120Full rate constant matrix contraction method for obtaining branching ratio of unimolecular decomposition
Y. Sumiya, T. Taketsugu, S. Maeda
J. Comput. Chem., 2017, 38, 101-109.

2016: Satoshi Maeda: 18 件

119Ab Initio Molecular Dynamics Study of the Photoreaction of 1,1 '-Dimethylstilbene upon S-0 -> S-1 Excitation
Y. Harabuchi, R. Yamamoto, S. Maeda, S. Takeuchi, T. Tahara, T. Taketsugu
J. Phys. Chem. A, 2016, 120, 8804-8812.
118Propargyl-Assisted Selective Amidation Applied in C-terminal Glycine Peptide Conjugation
K. K. Vong, S. Maeda, K. Tanaka
Chem. Eur. J., 2016, 22, 18865-18872.
117Catalytic Hydrogenation of Carbon Dioxide with Ammonia-Borane by Pincer-Type Phosphorus Compounds: Theoretical Prediction
G. X. Zeng, S. Maeda, T. Taketsugu, S. Sakaki
J. Am. Chem. Soc., 2016, 138, 13481-13484.
116Multistep Intersystem Crossing Pathways in Cinnamate-Based UV-B Sunscreens
K. Yamazaki, Y. Miyazaki, Y. Harabuchi, T. Taketsugu, S. Maeda, Y. Inokuchi, S. Kinoshita, M. Sumida, Y. Onitsuka, H. Kohguchi, M. Ehara, T. Ebata
J. Phys. Chem. Lett., 2016, 7, 4001-4007.
115Theoretical insight into the wavelength-dependent photodissociation mechanism of nitric acid
H. Xiao, S. Maeda, K. Morokuma
Phys. Chem. Chem. Phys., 2016, 18, 24582-24590.
114Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction Mechanisms
W. M. Sameera, A. K. Sharma, S. Maeda, K. Morokuma
Chem. Rec., 2016, 16, 2349-2363.
113Fragmentation network of doubly charged methionine: Interpretation using graph theory
D. T. Ha, K. Yamazaki, Y. Wang, M. Alcami, S. Maeda, H. Kono, F. Martin, E. Kukk
J. Chem. Phys., 2016, 145, 094302 (9 pages).
112Orbital Energy-Based Reaction Analysis of S(N)2 Reactions
T. Tsuneda, S. Maeda, Y. Harabuchi, R. K. Singh
Computation, 2016, 4, 23 (13 pages).
111Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces
S. Maeda, Y. Harabuchi, M. Takagi, T. Taketsugu, K. Morokuma
Chem. Rec., 2016, 16, 2232-2248.
110Theoretical study on mechanism of the photochemical ligand substitution of fac- Re-I(bpy)(CO)(3)(PR3) (+) complex
K. Saita, Y. Harabuchi, T. Taketsugu, O. Ishitani, S. Maeda
Phys. Chem. Chem. Phys., 2016, 18, 17557-17564.
109Theoretical Study of Hydrogenation Catalysis of Phosphorus Compound and Prediction of Catalyst with High Activity and Wide Application Scope
G. X. Zeng, S. Maeda, T. Taketsugu, S. Sakaki
Acs Catalysis, 2016, 6, 4859-4870.
108Nonadiabatic Pathways of Furan and Dibenzofuran: What Makes Dibenzofuran Fluorescent?
Y. Harabuchi, T. Taketsugu, S. Maeda
Chem. Lett., 2016, 45, 940-942.
107Computational Catalysis Using the Artificial Force Induced Reaction Method
W. M. Sameera, S. Maeda, K. Morokuma
Acc. Chem. Res., 2016, 49, 763-773.
106Contrasting ring-opening propensities in UV-excited alpha-pyrone and coumarin
D. Murdock, R. A. Ingle, I. V. Sazanovich, I. P. Clark, Y. Harabuchi, T. Taketsugu, S. Maeda, A. J. Orr-Ewing, M. N. R. Ashfold
Phys. Chem. Chem. Phys., 2016, 18, 2629-2638.
105The effect of Mg2+ incorporation on the structure of calcium carbonate clusters: investigation by the anharmonic downward distortion following method
J. Kawano, S. Maeda, T. Nagai
Phys. Chem. Chem. Phys., 2016, 18, 2690-2698.
104Deciphering Time Scale Hierarchy in Reaction Networks
Y. Nagahata, S. Maeda, H. Teramoto, T. Horiyama, T. Taketsugu, T. Komatsuzaki
J. Phys. Chem. B, 2016, 120, 1961-1971.
103Nontotally symmetric trifurcation of an S(N)2 reaction pathway
Y. Harabuchi, Y. Ono, S. Maeda, T. Taketsugu, K. Keipert, M. S. Gordon
J. Comput. Chem., 2016, 37, 487-493.
102Exploring the Mechanism of Ultrafast Intersystem Crossing in Rhenium(I) Carbonyl Bipyridine Halide Complexes: Key Vibrational Modes and Spin-Vibronic Quantum Dynamics
Y. Harabuchi, J. Eng, E. Gindensperger, T. Taketsugu, S. Maeda, C. Daniel
J. Chem. Theory Comput., 2016, 12, 2335-2345.

2015: Satoshi Maeda: 13 件

101Kinetic Analysis for the Multistep Profiles of Organic Reactions: Significance of the Conformational Entropy on the Rate Constants of the Claisen Rearrangement
Y. Sumiya, Y. Nagahata, T. Komatsuzaki, T. Taketsugu, S. Maeda
J. Phys. Chem. A, 2015, 119, 11641-11649.
100Exploration of Quenching Pathways of Multiluminescent Acenes Using the GRRM Method with the SF-TDDFT Method
S. Suzuki, S. Maeda, K. Morokuma
J. Phys. Chem. A, 2015, 119, 11479-11487.
99Response to "Comment on 'Analyses of bifurcation of reaction pathways on a global reaction route map: A case study of gold cluster Au-5"' J. Chem. Phys. 143, 177101 (2015)
Y. Harabuchi, Y. Ono, S. Maeda, T. Taketsugu
J. Chem. Phys., 2015, 143, 177102 (2 pages).
98Global investigation of potential energy surfaces for the pyrolysis of C(1)-C(3) hydrocarbons: toward the development of detailed kinetic models from first principles
M. N. Ryazantsev, A. Jamal, S. Maeda, K. Morokuma
Phys. Chem. Chem. Phys., 2015, 17, 27789-27805.
97Exploration of minimum energy conical intersection structures of small polycyclic aromatic hydrocarbons: toward an understanding of the size dependence of fluorescence quantum yields
Y. Harabuchi, T. Taketsugu, S. Maeda
Phys. Chem. Chem. Phys., 2015, 17, 22561-22565.
96Analyses of bifurcation of reaction pathways on a global reaction route map: a case study of gold cluster Au5
Y. Harabuchi, Y. Ono, S. Maeda, T. Taketsugu
J. Chem. Phys., 2015, 143, 014301 (7 pages).
95Isomers of Benzene on Its Global Network of Reaction Pathways
H. Tokoyama, H. Yamakado, S. Maeda, K. Ohno
Bull. Chem. Soc. Jpn., 2015, 88, 1284-1290.
94Positive Effect of Water in Asymmetric Direct Aldol Reactions with Primary Amine Organocatalyst: Experimental and Computational Studies
S. A. Moteki, H. Maruyama, K. Nakayama, H. Li, G. Petrova, S. Maeda, K. Morokuma, K. Maruoka
Chem. Asian J., 2015, 10, 2112-2116.
93Reaction Mechanism of the Anomalous Formal Nucleophilic Borylation of Organic Halides with Silylborane: Combined Theoretical and Experimental Studies
R. Uematsu, E. Yamamoto, S. Maeda, H. Ito, T. Taketsugu
J. Am. Chem. Soc., 2015, 137, 4090-4099.
92From roaming atoms to hopping surfaces: mapping out global reaction routes in photochemistry
S. Maeda, T. Taketsugu, K. Ohno, K. Morokuma
J. Am. Chem. Soc., 2015, 137, 3433-3445.
91Reactivity of Gold Clusters in the Regime of Structural Fluxionality
M. Gao, A. Lyalin, M. Takagi, S. Maeda, T. Taketsugu
J. Phys. Chem. C, 2015, 119, 11120-11130.
90Mechanisms for the Breakdown of Halomethanes through Reactions with Ground-State Cyano Radicals
P. Farahani, S. Maeda, J. S. Francisco, M. Lundberg
Chem. Phys. Chem., 2015, 16, 181-190.
89Intrinsic Reaction Coordinate: Calculation, Bifurcation, and Automated Search
S. Maeda, Y. Harabuchi, Y. Ono, T. Taketsugu, K. Morokuma
Int. J. Quantum Chem., 2015, 115, 258-269.

2014: Satoshi Maeda: 12 件

88Systematic Exploration of Minimum Energy Conical Intersection Structures near the Franck-Condon Region
S. Maeda, Y. Harabuchi, T. Taketsugu, K. Morokuma
J. Phys. Chem. A, 2014, 118, 12050-12058.
87Complete active space second order perturbation theory (CASPT2) study of N(D-2) + H2O reaction paths on D-1 and D-0 potential energy surfaces: Direct and roaming pathways
M. Isegawa, F. Y. Liu, S. Maeda, K. Morokuma
J. Chem. Phys., 2014, 141, 154303 (9 pages).
86Anharmonic Downward Distortion Following for Automated Exploration of Quantum Chemical Potential Energy Surfaces
S. Maeda, T. Taketsugu, K. Morokuma, K. Ohno
Bull. Chem. Soc. Jpn., 2014, 87, 1315-1334.
85Theoretical Mechanistic Studies on Methyltrioxorhenium-Catalyzed Olefin Cyclopropanation: Stepwise Transfer of a Terminal Methylene Group
G. Luo, Y. Luo, S. Maeda, J. P. Qu, Z. M. Hou, K. Ohno
Organometallics, 2014, 33, 3840-3846.
84Ab initio reaction pathways for photodissociation and isomerization of nitromethane on four singlet potential energy surfaces with three roaming paths
M. Isegawa, F. Liu, S. Maeda, K. Morokuma
J. Chem. Phys., 2014, 140, 244310 (12 pages).
83Catalytic Transfer Hydrogenation by a Trivalent Phosphorus Compound: Phosphorus- Ligand Cooperation Pathway or PIII/ PV Redox Pathway?
G. X. Zeng, S. Maeda, T. Taketsugu, S. Sakaki
Angew. Chem. Int. Edit., 2014, 53, 4633-4637.
82Application of Automated Reaction Path Search Methods to a Systematic Search of Single-Bond Activation Pathways Catalyzed by Small Metal Clusters: A Case Study on H-H Activation by Gold
M. Gao, A. Lyalin, S. Maeda, T. Taketsugu
J. Chem. Theory Comput., 2014, 10, 1623-1630.
81Predicting pathways for terpene formation from first principles - routes to known and new sesquiterpenes
M. Isegawa, S. Maeda, D. J. Tantillo, K. Morokuma
Chem. Sci., 2014, 5, 1555-1560.
80Exploration of Isomers of Benzene by GRRM/SCC-DFTB
H. Tokoyama, H. Yamakado, S. Maeda, K. Ohno
Chem. Lett., 2014, 43, 702-704.
79Direct Pathway for Water-Gas Shift Reaction in Gas Phase
Y. Harabuchi, S. Maeda, T. Taketsugu, K. Ohno
Chem. Lett., 2014, 43, 193-195.
78Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method
S. Maeda, T. Taketsugu, K. Morokuma
J. Comput. Chem., 2014, 35, 166-173.
77Multiple Reaction Pathways Operating in the Mechanism of Vinylogous Mannich-Type Reaction Activated by a Water Molecule
R. Uematsu, S. Maeda, T. Taketsugu
Chem. Asian J., 2014, 9, 305-312.

2013: Satoshi Maeda: 9 件

76Development of Azo-Based Fluorescent Probes to Detect Different Levels of Hypoxia
W. Piao, S. Tsuda, Y. Tanaka, S. Maeda, F. Y. Liu, S. Takahashi, Y. Kushida, T. Komatsu, T. Ueno, T. Terai, T. Nakazawa, M. Uchiyama, K. Morokuma, T. Nagano, K. Hanaoka
Angew. Chem. Int. Edit., 2013, 52, 13028-13032.
75Automated Search for Minimum Energy Conical Intersection Geometries between the Lowest Two Singlet States S0/S1-MECIs by the Spin-Flip TDDFT Method
Y. Harabuchi, S. Maeda, T. Taketsugu, N. Minezawa, K. Morokuma
J. Chem. Theory Comput., 2013, 9, 4116-4123.
74Theoretical Study on the Photodissociation of Methylamine Involving S-1, T-1, and S-0 States
H. Xiao, S. Maeda, K. Morokuma
J. Phys. Chem. A, 2013, 117, 5757-5764.
73Exploring Pathways of Photoaddition Reactions by Artificial Force Induced Reaction Method: A Case Study on the Paterno-Buchi Reaction
S. Maeda, T. Taketsugu, K. Morokuma
Z. Phys. Chem., 2013, 227, 1421-1433.
72Sampling of Transition States for Predicting Diastereoselectivity Using Automated Search Method-Aqueous Lanthanide-Catalyzed Mukaiyama Aldol Reaction
M. Hatanaka, S. Maeda, K. Morokuma
J. Chem. Theory Comput., 2013, 9, 2882-2886.
71Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls
P. S. Krstic, J. P. Allain, C. N. Taylor, J. Dadras, S. Maeda, K. Morokuma, J. Jakowski, A. Allouche, C. H. Skinner
Phys. Rev. Lett., 2013, 110, 105001 (5 pages).
70CASPT2 Study of Photodissociation Pathways of Ketene
H. Xiao, S. Maeda, K. Morokuma
J. Phys. Chem. A, 2013, 117, 7001-7008.
69Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods
S. Maeda, K. Ohno, K. Morokuma
Phys. Chem. Chem. Phys., 2013, 15, 3683-3701.
68Quasiclassical Trajectory Studies of the Photodissociation Dynamics of NO3 from the D-0 and D-1 Potential Energy Surfaces
B. Fu, J. M. Bowman, H. Xiao, S. Maeda, K. Morokuma
J. Chem. Theory Comput., 2013, 9, 893-900.

2012: Satoshi Maeda: 8 件

67Exploring Potential Energy Surfaces of Large Systems with Artificial Force Induced Reaction Method in Combination with ONIOM and Microiteration
S. Maeda, E. Abe, M. Hatanaka, T. Taketsugu, K. Morokuma
J. Chem. Theory Comput., 2012, 8, 5058-5063.
66Global ab Initio Potential Energy Surfaces for Low-Lying Doublet States of NO3
H. Y. Xiao, S. Maeda, K. Morokuma
J. Chem. Theory Comput., 2012, 8, 2600-2605.
65Automated Exploration of Photolytic Channels of HCOOH: Conformational Memory via Excited-State Roaming
S. Maeda, T. Taketsugu, K. Morokuma
J. Phys. Chem. Lett., 2012, 3, 1900-1907.
64No Straight Path: Roaming in Both Ground- and Excited-State Photolytic Channels of NO3 -> NO+O-2
M. P. Grubb, M. L. Warter, H. Y. Xiao, S. Maeda, K. Morokuma, S. W. North
Science, 2012, 335, 1075-1078.
63Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path Search Method: A Case Study on HCo(CO)(3)-Catalyzed Hydroformylation
S. Maeda, K. Morokuma
J. Chem. Theory Comput., 2012, 8, 380-385.
62Experimental and theoretical investigations of isomerization reactions of ionized acetone and its dimer
Y. Matsuda, K. Hoki, S. Maeda, Ken-ichi Hanaue, K. Ohta, K. Morokuma, N. Mikami, A. Fujii
Phys. Chem. Chem. Phys., 2012, 14, 712-719.
61Dynamics of deuterium retention and sputtering of Li-C-O surfaces
P. S. Krstic, J. P. Allain, A. Allouche, J. Jakowski, J. Dadras, C. N. Taylor, Z. C. Yang, K. Morokuma, S. Maeda
Fusion Eng. Des., 2012, 87, 1732-1736.
60Exploring Multiple Potential Energy Surfaces: Photochemistry of Small Carbonyl Compounds
S. Maeda, K. Ohno, K. Morokuma
Adv. Chem. Phys., 2012, 2012, 1-13.

2011: Satoshi Maeda: 6 件

59Finding Reaction Pathways of Type A+B -> X: Toward Systematic Prediction of Reaction Mechanisms
S. Maeda, K. Morokuma
J. Chem. Theory Comput., 2011, 7, 2335-2345.
58Temperature dependences of rate coefficients for electron catalyzed mutual neutralization
N. S. Shuman, T. M. Miller, J. F. Friedman, A. A. Viggiano, S. Maeda, K. Morokuma
J. Chem. Phys., 2011, 135, 024204 (8 pages).
57Excited-State Roaming Dynamics in Photolysis of a Nitrate Radical
H. Xiao, S. Maeda, K. Morokuma
J. Phys. Chem. Lett., 2011, 2, 934-938.
56Finding Minimum Structures on the Seam of Crossing in Reactions of Type A+B -> X: Exploration of Nonadiabatic Ignition Pathways of Unsaturated Hydrocarbons
S. Maeda, R. Saito, K. Morokuma
J. Phys. Chem. Lett., 2011, 2, 852-857.
55Ab initio anharmonic calculations of vibrational frequencies of benzene by means of efficient construction of potential energy functions
K. Ohno, S. Maeda
Chem. Phys. Lett., 2011, 503, 322-326.
54Finding reaction pathways for multicomponent reactions: the Passerini reaction is a four-component reaction
S. Maeda, S. Komagawa, M. Uchiyama, K. Morokuma
Angew. Chem. Int. Ed. Engl., 2011, 50, 644-649.

2010: Satoshi Maeda: 10 件

53Theoretical Proton Affinity and Fluoride Affinity of Nerve Agent VX
N. C. Bera, S. Maeda, K. Morokuma, A. A. Viggiano
J. Phys. Chem. A, 2010, 114, 13189-13197.
52Long-Range Migration of a Water Molecule To Catalyze a Tautomerization in Photoionization of the Hydrated Formamide Cluster
S. Maeda, Y. Matsuda, S. Mizutani, A. Fujii, K. Ohno
J. Phys. Chem. A, 2010, 114, 11896-11899.
51Photochemistry of Methyl Ethyl Ketone: Quantum Yields and S-1/S-0-Diradical Mechanism of Photodissociation
R. Nadasdi, G. L. Zugner, M. Farkas, S. Dobe, S. Maeda, K. Morokuma
Chem. Phys. Chem., 2010, 11, 3883-3895.
50Theoretical Investigation of the Reaction Pathway of O Atom on Si(001)-(2 x 1)
S. Ohno, K. Shudo, M. Tanaka, S. Maeda, K. Ohno
J. Phys. Chem. C, 2010, 114, 15671-15677.
49Communications: A systematic method for locating transition structures of A plus B -> X type reactions
S. Maeda, K. Morokuma
J. Chem. Phys., 2010, 132, 241102 (4 pages).
48A Theoretical Study on the Photodissociation of Acetone: Insight into the Slow Intersystem Crossing and Exploration of Nonadiabatic Pathways to the Ground State
S. Maeda, K. Ohno, K. Morokuma
J. Phys. Chem. Lett., 2010, 1, 1841-1845.
47Ion Chemistry of VX Surrogates and Ion Energetics Properties of VX: New Suggestions for VX Chemical Ionization Mass Spectrometry Detection
A. J. Midey, T. M. Miller, A. A. Viggiano, N. C. Bera, S. Maeda, K. Morokuma
Anal. Chem., 2010, 82, 3764-3771.
46Updated Branching Plane for Finding Conical Intersections without Coupling Derivative Vectors
S. Maeda, K. Ohno, K. Morokuma
J. Chem. Theory Comput., 2010, 6, 1538-1545.
45Synthesis and structure of stable base-free dialkylsilanimines
T. Iwamoto, N. Ohnishi, Z. Y. Gui, S. Ishida, H. Isobe, S. Maeda, K. Ohno, M. Kira
New J. Chem., 2010, 34, 1637-1645.
44A systematic study on the RuHCl-BINAP-catalyzed asymmetric hydrogenation mechanism by the global reaction route mapping method
K. Ohno, S. Maeda
J. Mol. Catal. A: Chem., 2010, 324, 133-140.

2009: Satoshi Maeda: 6 件

43An Automated and Systematic Transition Structure Explorer in Large Flexible Molecular Systems Based on Combined Global Reaction Route Mapping and Microiteration Methods
S. Maeda, K. Ohno, K. Morokuma
J. Chem. Theory Comput., 2009, 5, 2734-2743.
42Systematic Search for Isomerization Pathways of Hexasilabenzene for Finding Its Kinetic Stability
M. Moteki, S. Maeda, K. Ohno
Organometallics, 2009, 28, 2218-2224.
41Automated Global Mapping of Minimal Energy Points on Seams of Crossing by the Anharmonic Downward Distortion Following Method: A Case Study of H2CO
S. Maeda, K. Ohno, K. Morokuma
J. Phys. Chem. A, 2009, 113, 1704-1710.
40Water-catalyzed gas-phase reaction of formic acid with hydroxyl radical: A computational investigation
Y. Luo, S. Maeda, K. Ohno
Chem. Phys. Lett., 2009, 469, 57-61.
39Photochemical reactions of the low-lying excited states of formaldehyde: T-1/S-0 intersystem crossings, characteristics of the S-1 and T-1 potential energy surfaces, and a global T-1 potential energy surface
P. Zhang, S. Maeda, K. Morokuma, B. J. Braams
J. Chem. Phys., 2009, 130, 114304 (10 pages).
38Automated Exploration of Stable Isomers of H+(H2O)(n) (n=5-7) via Ab Initio Calculations: An Application of the Anharmonic Downward Distortion Following Algorithm
Y. Luo, S. Maeda, K. Ohno
J. Comput. Chem., 2009, 30, 952-961.

2008: Satoshi Maeda: 8 件

37Lowest Transition State for the Chirality-Determining Step in Ru((R)-BINAP)-Catalyzed Asymmetric Hydrogenation of Methyl-3-Oxobutanoate
S. Maeda, K. Ohno
J. Am. Chem. Soc., 2008, 130, 17228-17229.
36Automated exploration of reaction channels
K. Ohno, S. Maeda
Phys. Scr., 2008, 78, 58121-58128.
35Decomposition of alkyl hydroperoxide by a copper(I) complex: insights from density functional theory
Y. Luo, S. Maeda, K. Ohno
Tetrahedron Lett., 2008, 49, 6841-6845.
34Intramolecular vibrational frequencies of water clusters (H2O)n (n=2-5): Anharmonic analyses using potential functions based on the scaled hypersphere search method
Y. Watanabe, S. Maeda, K. Ohno
J. Chem. Phys., 2008, 129, 074315 (9 pages).
33A new global reaction route map on the potential energy surface of H(2)CO with unrestricted level
S. Maeda, K. Ohno
Chem. Phys. Lett., 2008, 460, 55-58.
32DFT study on isomerization and decomposition of cuprous dialkyldithiophosphate and its reaction with alkylperoxy radical
Y. Luo, S. Maeda, K. Ohno
J. Phys. Chem. A, 2008, 112, 5720-5726.
31Microsolvation of hydrogen sulfide: Exploration of H2S center dot(H2O)(n) and SH-center dot H3O+(H2O)(n-1) (n=5-7) cluster structures on ab initio potential energy surfaces by the scaled hypersphere search method
S. Maeda, K. Ohno
J. Phys. Chem. A, 2008, 112, 2962-2968.
30Finding important, anharmonic terms in the sixth-order potential energy function by the scaled hypersphere search method: An application to vibrational analyses of molecules and clusters
S. Maeda, Y. Watanabe, K. Ohno
J. Chem. Phys., 2008, 128, 144111 (11 pages).

2007: Satoshi Maeda: 5 件

29Automated exploration of adsorption structures of an organic molecule on RuH2-BINAP by the ONIOM method and the scaled hypersphere search method
S. Maeda, K. Ohno
J. Phys. Chem. A, 2007, 111, 13168-13171.
28Quantum chemistry study of H+(H2O)(8): A global search for its isomers by the scaled hypersphere search method, and its thermal behavior
Y. Luo, S. Maeda, K. Ohno
J. Phys. Chem. A, 2007, 111, 10732-10737.
27Global reaction route mapping on potential energy surfaces Of C2H7+ and C3H9+
Y. Watanabe, S. Maeda, K. Ohno
Chem. Phys. Lett., 2007, 447, 21-26.
26Insight into global reaction mechanism of C-2, H-4, O system from ab initio calculations by the scaled hypersphere search method
X. Yang, S. Maeda, K. Ohno
J. Phys. Chem. A, 2007, 111, 5099-5110.
25Structures of water octamers (H2O)(8): Exploration on ab initio potential energy surfaces by the scaled hypersphere search method
S. Maeda, K. Ohno
J. Phys. Chem. A, 2007, 111, 4527-4534.

2006: Satoshi Maeda: 8 件

24Global Mapping of Small Carbon Clusters Using the Scaled Hypersphere Search Method
S. Maeda, B. Hajgató, K. Ohno
AIP Conf. Proc., 2006, 855, 296-304.
23Anisotropic interaction and stereoreactivity in a chemi-ionization process of OCS by collision with He*(2(3)S) metastable atoms
T. Horio, S. Maeda, N. Kishimoto, K. Ohno
J. Phys. Chem. A, 2006, 110, 11010-11017.
22Global reaction route mapping on potential energy surfaces of formaldehyde, formic acid, and their metal-substituted analogues
K. Ohno, S. Maeda
J. Phys. Chem. A, 2006, 110, 8933-8941.
21D-L conversion pathways between optical isomers of alanine: Applications of the scaled hypersphere search method to explore unknown reaction routes in a chiral system
K. Ohno, S. Maeda
Chem. Lett., 2006, 35, 492-493.
20Conversion pathways between a fullerene and a ring among C-20 clusters by a sphere contracting walk method: Remarkable difference in local potential energy landscapes around the fullerene and the ring
S. Maeda, K. Ohno
J. Chem. Phys., 2006, 124, 174306 (7 pages).
19Probing anisotropic interaction potentials of unsaturated hydrocarbons with He*(2 S-3) metastable atom: Attractive-site preference of sigma-direction in C2H2 and pi-direction in C2H4
T. Horio, T. Hatamoto, S. Maeda, N. Kishimoto, K. Ohno
J. Chem. Phys., 2006, 124, 104308 (14 pages).
18Generation mechanisms of amino acids in interstellar space via reactions between closed-shell species: Significance of higher energy isomers in molecular evolution
S. Maeda, K. Ohno
Astrophys. J., 2006, 640, 823-828.
17Global analysis of reaction pathways on the potential energy surface of cyanoacetylene by the scaled hypersphere search method
X. Yang, S. Maeda, K. Ohno
Chem. Phys. Lett., 2006, 418, 208-216.

2005: Satoshi Maeda: 7 件

16Development of a cooled He-*(2(3)S) beam source for measurements of state-resolved collision energy dependence of Penning ionization cross sections: Evidence for a stereospecific attractive well around methyl group in CH3CN
T. Horio, M. Yamazaki, S. Maeda, T. Hatamoto, N. Kishimoto, K. Ohno
J. Chem. Phys., 2005, 123, 194308 (13 pages).
15A scaled hypersphere interpolation technique for efficient construction of multidimensional potential energy surfaces
S. Maeda, Y. Watanabe, K. Ohno
Chem. Phys. Lett., 2005, 414, 265-270.
14Global investigation on the potential energy surface of CH3CN: Application of the scaled hypersphere search method
X. Yang, S. Maeda, K. Ohno
J. Phys. Chem. A, 2005, 109, 7319-7328.
13Global mapping of equilibrium and transition structures on potential energy surfaces by the scaled hypersphere search method: Applications to ab initio surfaces of formaldehyde and propyne molecules
S. Maeda, K. Ohno
J. Phys. Chem. A, 2005, 109, 5742-5753.
12A new approach for finding a transition state connecting a reactant and a product without initial guess: applications of the scaled hypersphere search method to isomerization reactions of HCN, (H2O)(2), and alanine dipeptide
S. Maeda, K. Ohno
Chem. Phys. Lett., 2005, 404, 95-99.
11Two-dimensional Penning ionization electron spectroscopic study on outer characteristics of molecules
K. Ohno, M. Yamazaki, S. Maeda, N. Kishimoto
J. Electron Spectrosc. Relat. Phenom., 2005, 142, 283-293.
10Penning ionization electron spectroscopy of C6H6 by collision with He*(2(3)S) metastable atoms and classical trajectory calculations: Optimization of ab initio model potentials
M. Yamazaki, S. Maeda, N. Kishimoto, K. Ohno
J. Chem. Phys., 2005, 122, 044303 (9 pages).

2004: Satoshi Maeda: 5 件

9Ab initio studies on synthetic routes of glycine from simple molecules via ammonolysis of acetolactone: Applications of the scaled hypersphere search method
S. Maeda, K. Ohno
Chem. Lett., 2004, 33, 1372-1373.
8No activation barrier synthetic route of glycine from simple molecules (NH3, CH2, and CO2) via carboxylation of ammonium ylide: a theoretical study by the scaled hypersphere search method
S. Maeda, K. Ohno
Chem. Phys. Lett., 2004, 398, 240-244.
7Determination of outer shape of molecular orbitals based on two-dimensional Penning ionization electron spectroscopy for N-2 and CO by He*2(3)S
M. Yamazaki, S. Maeda, K. Ohno
Chem. Phys. Lett., 2004, 391, 366-373.
6A scaled hypersphere search method for the topography of reaction pathways on the potential energy surface
K. Ohno, S. Maeda
Chem. Phys. Lett., 2004, 384, 277-282.
5An overlap expansion method for improving ab initio model potentials: Anisotropic intermolecular potentials of N-2, CO, and C2H2 with He-*(2 S-3)
S. Maeda, M. Yamazaki, N. Kishimoto, K. Ohno
J. Chem. Phys., 2004, 120, 781-790.

2003: Satoshi Maeda: 2 件

4Collision-energy-resolved Penning ionization electron spectroscopy of OCS with He*(2(3)S) metastable atoms
N. Kishimoto, T. Horio, S. Maeda, K. Ohno
Chem. Phys. Lett., 2003, 379, 332-339.
3A new method for constructing multidimensional potential energy surfaces by a polar coordinate interpolation technique
S. Maeda, K. Ohno
Chem. Phys. Lett., 2003, 381, 177-186.

2002: Satoshi Maeda: 2 件

2Classical trajectory calculations for collision-energy/electron-energy resolved two-dimensional Penning ionization electron spectra of N-2, CO, and CH3CN with metastable He-*(2(3)S) atoms
M. Yamazaki, S. Maeda, N. Kishimoto, K. Ohno
J. Chem. Phys., 2002, 117, 5707-5721.
1Classical trajectory calculations of collision energy dependence of Penning ionization cross-sections for N-2 and CO by He*2(3)S; optimization of anisotropic model potentials
M. Yamazaki, S. Maeda, N. Kishimoto, K. Ohno
Chem. Phys. Lett., 2002, 355, 311-318.