104 | Reactivity Prediction through Quantum Chemical CalculationsS. Maeda, Y. Harabuchi, T. Hasegawa, K. Suzuki, T. MitaAsiaChem, 2021, 2, 56-63. |
103 | Mechanochemical synthesis of magnesium-based carbon nucleophiles in air and their use in organic synthesisR. Takahashi, A. Hu, P. Gao, Y. Gao, Y. Pang, T. Seo, J. Jiang, S. Maeda, H. Takaya, K. Kubota, H. ItoNat. Commun., 2021, 12, 6691 |
102 | Cyclodextrins with Multiple Pyrenyl Groups: An Approach to Organic Molecules Exhibiting Bright Excimer Circularly Polarized LuminescenceH. Shigemitsu, K. Kawakami, Y. Nagata, R. Kajiwara, S. Yamada, T. Mori, T. KidaAngew. Chem. Int. Edit., 2021, 61, e202114700 |
101 | Factors to influence low-temperature performance of supported Mn–Na2WO4 in oxidative coupling of methaneT.N.Ngyuyen, K.Seenivasan, S.Nakanowatari, P. Mohan, T.T.P.Nhat, S. Nishimura, K. Takahashi, T.TaniikeMol. Catal., 2021 |
100 | Pt(II)-Chiral Diene-Catalyzed Enantioselective Formal [4 + 2] Cycloaddition Initiated by C–C Bond Cleavage and Elucidation of a Pt(II)/(IV) cycle by DFT CalculationsT. Shibata, T. Shibata, S. Nishibe, H.Takano, S. MaedaOrg. Chem. Front. , 2021, 8, 6985 -6991 . |
99 | Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of EthyleneH.Takano, Y. You, H. Hayashi, Y. Harabuchi, S. Maeda, T. MitaAcs Omega, 2021, 6, 33846-33854. |
98 | Anthraquinodimethane Ring-flip in Sterically Congested Alkenes: Isolation of Isomer and Elucidation of Intermediate through Experimental and Theoretical ApproachY. Ishigaki, T. Tadokoro, Y. Harabuchi, Y. Hayashi, S. Maeda, T. SuzukiBull. Chem. Soc. Jpn., 2021 |
97 | Carboxylation of a Palladacycle Formed via C(sp3)–H Activation: Theory-Driven Reaction DesignW. Kanna, Y. Harabuchi, H.Takano, H. Hayashi, S. Maeda, T. MitaChem. Asian J., 2021 |
96 | A dataset of computational reaction barriers for the Claisen rearrangement: Chemical and numerical analysisH. Okada, S. MaedaMol. Infom., 2021 |
95 | Constructing catalyst knowledge networks from catalyst big data in oxidative coupling of methane for designing catalystsL. Takahashi, T.N.Ngyuyen, S.Nakanowatari, A. Fujiwara, T.Taniike, K. TakahashiChem. Sci., 2021 |
94 | Switching the relaxation pathway by steric effects in conjugated dienesT. Tentaku, R. Atobe, T. Tsutsumi, S. Sato, Y. Harabuchi, T. Taketsugu, T. SekikawaJ. Phys. Chem. B, 2021 |
93 | A reaction route network for methanol decomposition on a Pt(111) surfaceK. Sugiyama, K. Saita, S. MaedaJ. Comput. Chem., 2021 |
92 | Catalysis Gene Expression Profiling: Sequencing and Designing CatalystsK. Takahashi, J.Fujima, I. Miyazato, S.Nakanowatari, A. Fujiwara, T.N.Ngyuyen, T.Taniike, L. TakahashiJ. Phys. Chem. Lett., 2021, 12, 7335-7341. |
91 | Pincer-Type Phosphorus Compounds with Boryl-Pendant and Application in Catalytic H-2 Generation from Ammonia-Borane: A Theoretical StudyD. Yang, P. Bao, Z. Yang, Z. Chen, S. Sakaki, S. Maeda, G. X. ZengChemCatChem, 2021, 13 |
90 | Quick approach for optimization of monodisperse microsphere synthesis with a knowledge sharing strategy powered by machine learningX. Zhang, Y. Li, Y. Feng, J. Guo, K. Takahashi, C. WangChem. Phys. Lett., 2021, 780, 139808 |
89 | Extraction of catalyst design heuristics from random catalyst dataset and their utilization in catalyst development for oxidative coupling of methaneS.Nakanowatari, T.N.Ngyuyen, H.Chikuma, A. Fujiwara, K.Seenivasan, A.Thakur, L. Takahashi, K. Takahashi, T.TaniikeChemCatChem, 2021, 21, 3262-3269. |
88 | Catalytic Oxidation of Methane to Methanol over Cu-CHA with Molecular OxygenA.Hirayama, Y. Tsuchimura, H. Yoshida, M. Machida, S. Nishimura, K. Kato, K. Takahashi, J. OhyamaCatal. Sci. Technol., 2021 |
87 | Alkali Metal Fluorides in Fluorinated Alcohols: Fundamental Properties and Applications to Electrochemical FluorinationN. Shida, H. Takenaka, A. Gotou,, T, Isogai, A. Yamauchi, Y. Kishikawa, Y. Nagata, I. Tomita, T. Fuchigami, Shinsuke InagiJ. Org. Chem., 2021, 86, 16128-16133. |
86 | Mining hydroformylation in complex reaction network via graph theoryK. Takahashi, S. MaedaRSC Adv., 2021, 11, 23235-23240. |
85 | Synthesis and Absorption Properties of Long AcenoacenesA. Jančařík, D. Mildner, Y. Nagata, M. Banasiewicz, J. Olas, B. Kozankiewicz, J. Holec, A. GourdonChem.-Eur. J., 2021, 27, 12388-12394 . |
84 | Mechanism of 2,6-Dichloro-4,4’-bipyridine-Catalyzed Diboration of Pyrazines Involving a Bipyridine-Stabilized Boryl RadicalT. Ohmura, Y. Morimasa, T. Ichino, Y. Miyake, Y. Murata, M. Suginome, K. Tajima, T. Taketsugu, S. MaedaBull. Chem. Soc. Jpn., 2021 |
83 | Unveiling gas‐phase oxidative coupling of methane via data analysisS. Ishioka, I. Miyazato, L. Takahashi, T.N.Ngyuyen, T.Taniike, K. TakahashiJ. Comput. Chem., 2021, 42, 1447-1451. |
82 | Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force.S. Maeda, Y. HarabuchiWIREs Comput. Mol. Sci., 2021, 11, e1538 |
81 | Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO2: Computational Design, Scope, and ApplicationH. Hayashi, H.Takano, H.Katsuyama, Y. Harabuchi, S. Maeda, T. MitaChem. Eur. J., 2021 |
80 | Observation of Borane–Olefin Proximity Interaction Governing the Structure and Reactivity of Boron‐Containing MacrocyclesY. Murata, K. Matsunagi, J. Kashida, Y. Shoji, O. Cihan, S. Maeda, T. FukushimaAngew. Chem. Int. Ed. Engl., 2021 |
79 | Non‐adiabatic dynamic of atmospheric unimolecular photochemical reactions of 4,4‐difluoro‐crotonaldehyde using TD‐DFT and TSH approachesP. J. Castro, S. Maeda, K. MorokumaInt. J. Quantum Chem., 2021 |
78 | Targeted 1,3-dipolar cycloaddition with acrolein for cancer prodrug activationA. R. Pradipta, P. Ahmadi, K. Terashima, K. Muguruma, M. Fujii, T. Ichino, S. Maeda, K. TanakaChem. Sci., 2021, 12, 5438-5449. |
77 | Catalytic Direct Oxidation of Methane to Methanol by Redox of Copper Mordenite J. Ohyama, A.Hirayama, Y. Tsuchimura, N.Kondo, H. Yoshida, M. Machida, S. Nishimura, K. Kato, I. Miyazato, K. TakahashiCatal. Sci. Technol., 2021 |
76 | Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysisY. Kamei, Y. Seino, Y. Yamaguchi, T. Yoshino, S. Maeda, M. Kojima, S. MatsunagaNat. Commun., 2021, 12, 966 |
75 | Representing Catalytic and Processing Space in Methane Oxidation Reaction via Multioutput Machine LearningI. Miyazato, T.N.Ngyuyen, L. Takahashi, T.Taniike, K. TakahashiJ. Phys. Chem. Lett., 2021, 12, 808-814. |
74 | Combined Graph/Relational Database Management System for Calculated Chemical Reaction Pathway DataT. Gimadiev, R. Nugmanov, D. Batyrshin, T. Madzhidov, S. Maeda, P. Sidorov, A. VarnekJ. Chem. Inf. Model., 2021, 61, 554-559. |
73 | Combined Graph/Relational Database Management System for Calculated Chemical Reaction Pathway DataT. Gimadiev, R. Nugmanov, D. Batyrshin, T. Madzhidov, S. Maeda, P. Sidorov, A. VarnekJ. Chem. Inf. Model., 2021, 61, 554-559. |
72 | Data science assisted investigation of catalytically active copper hydrate in zeolites for direct oxidation of methane to methanol using H2O2J. Ohyama, A.Hirayama, N.Kondo, H. Yoshida, M. Machida, S. Nishimura, K.Hirai, I. Miyazato, K. TakahashiSci. Rep, 2021, 11, 2067 |
71 | Learning Catalyst Design Based on Bias-Free Data Set for Oxidative Coupling of MethaneT.N.Ngyuyen, S.Nakanowatari, T.T.P.Nhat, A.Thakur, L. Takahashi, K. Takahashi, T.TaniikeAcs Catalysis, 2021, 11, 1797-1809. |
70 | Representing the Methane Oxidation Reaction via Linking First-Principles Calculations and Experiment with Graph TheoryL. Takahashi, J. Ohyama, S. Nishimura, K. TakahashiJ. Phys. Chem. Lett., 2021, 12, 558-568. |
69 | Chemoselective Cleavage of Si−C(sp3) Bonds in Unactivated Tetraalkylsilanes Using Iodine Tris(trifluoroacetate)K. Matsuoka, N. Konami, M. Kojima, T. Mita, K. Suzuki, S. Maeda, T. Yoshino, S. MatsunagaJ. Am. Chem. Soc., 2021, 143, 103-108. |
68 | Direct Design of Catalysts in Oxidative Coupling of Methane via High‐Throughput Experiment and Deep LearningK. Sugiyama, T.N.Ngyuyen, S.Nakanowatari, I. Miyazato, T.Taniike, K. TakahashiChemCatChem, 2021, 13, 952-957. |
67 | Substitution effect on the nonradiative decay and trans → cis photoisomerization route: a guideline to develop efficient cinnamate-based sunscreensS. Kinoshita, Y. Harabuchi, Y. Inokuchi, S. Maeda, M. Ehara, K. Yamazaki, T. EbataPhys. Chem. Chem. Phys., 2021, 23, 834-845. |
66 | Direct Design of Active Catalysts for Low Temperature Oxidative Coupling of Methane via Machine Learning and Data Mining J. Ohyama, T.Kinoshita, E.Funada, H. Yoshida, M. Machida, S. Nishimura, T. Uno, J.Fujima, I. Miyazato, L. Takahashi, K. TakahashiCatal. Sci. Technol., 2021, 11, 524-530. |
39 | Visualizing Scientists’ Cognitive Representation of Materials Data through the Application of OntologyL. Takahashi, K. TakahashiJ. Phys. Chem. Lett., 2019, 10, 7482-7491. |
38 | One-Minute Joule Annealing Enhances the Thermoelectric Properties of Carbon Nanotube Yarns via the Formation of Graphene at the InterfaceM. Hada, T. Hasegawa, H. Inoue, M. Takagi, K. Omoto, D. Chujo, S. Iemoto, T. Kuroda, T. Morimoto, T. Hayashi, T. Iijima, T. Tokunaga, N. Ikeda, K. Hujimori, C. Itoh, T. Nishikawa, Y. Yamashita, T. kiwa, S. Koshihara, S. Maeda, Y. HayashiACS Appl. Energy Mater. , 2019, 2, 7700-7708. |
37 | Controlling electronic structure of single layered HfX3 (X=S, Se) trichalcogenides through systematic Zr dopingI. Miyazato, S.Sarikurt, K. Takahashi, F. ErsanJ. Mater. Sci., 2019, 55, 660-669. |
36 | Global Reaction Route Mapping Strategy: A Tool for Finding New Chemistry in Computers.S. Maeda, Y. Harabuchi, K. Saitain "Molecular Technology, Volume 3: Materials Innovation" ed. by H. Yamamoto and T. Kato, Wiley-VCH, 2019, in press., 173-199. |
35 | Anharmonic Vibrational Computations with a Quartic Force Field for Curvilinear CoordinatesY. Harabuchi, R. Tani, N. DeSilva, B. Njegic, M. S. Gordon, T. TaketsuguJ. Chem. Phys., 2019, 151, 64104 (9 pages). |
34 | Data Driven Determination in Growth of Silver from Clusters to Nanoparticles and BulkK. Takahashi, L. TakahashiJ. Phys. Chem. Lett., 2019, 10, 4063-4068. |
33 | Data Driven Determination of Reaction Conditions in Oxidative Coupling of Methane via Machine LearningJ. Ohyama, S. Nishimura, K. TakahashiChemCatChem, 2019, 11, 4307-4313. |
32 | Direct observation of the doorway 1nπ* state of methylcinnamate and hydrogen-bonding effects on the photochemistry of cinnamate-based sunscreensS. Kinoshita, Y. Inokuchi, Y. Onitsuka, H. Kohguchi, N. Akai, T. Shiraogawa, M. Ehara, K. Yamazaki, Y. Harabuchi, S. Maeda, T. EbataPhys. Chem. Chem. Phys., 2019, 21, 19755-19763. |
31 | Automatic oxidation threshold recognition of XAFS data using supervised machine learningI. Miyazato, L. Takahashi, K. TakahashiMol. Syst. Des. Eng. , 2019, 4, 1014-1018. |
30 | Zn(OTf)2-mediated annulations of N-propargylated tetrahydrocarbolines: divergent synthesis of four distinct alkaloidal scaffoldsS. Yorimoto, A. Tsubouchi, H. Mizoguchi, H. Oikawa, Y. Tsunekawa, T. Ichino, S. Maeda, H. OguriChem. Sci., 2019, 10, 5686-5698. |
29 | On Benchmarking of Automated Methods for Performing Exhaustive Reaction Path SearchS. Maeda, Y. HarabuchiJ. Chem. Theory Comput., 2019, 15, 2111-2115. |
28 | Understanding CO oxidation on the Pt(111) surface based on reaction route networkK. Sugiyama, Y. Sumiya, M. Takagi, K. Saita, S. MaedaPhys. Chem. Chem. Phys., 2019, 21, 14366-14375. |
27 | A Theoretical Study on the Mechanism of the Oxidative Deborylation/C–C Coupling Reaction of Borepin DerivativesO. Cihan, Y. Shoji, T. Fukushima, S. MaedaJ. Org. Chem., 2019, 84, 1941-1950. |
26 | A Systematic Study on Bond Activation Energies of NO, N₂, and O₂ on Hexamers of Eight Transition MetalsT. Ichino, M. Takagi, S. MaedaChemCatChem, 2019, 11, 1346-1353. |
25 | Creating Machine Learning-Driven Material Recipes Based on Crystal StructureK. Takahashi, L. TakahashiJ. Phys. Chem. Lett., 2019, 10, 283-288. |
24 | Exploring approximate geometries of minimum energy conical intersections by TDDFT calculationsY. Harabuchi, M. Hatanaka, S. MaedaChem. Phys. Lett. X, 2019, 2, 100007 (8 pages). |
23 | Roles of Closed- and Open-loop conformations in Large-scale Structural Transitions of L-Lactate DehydrogenaseK. Suzuki, S. Maeda, K. MorokumaACS Omega, 2019, 4, 1178-1184. |
22 | Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu13T. Iwasa, T. Sato, M. Takagi, M. Gao, A. Lyalin, M. Kobayashi , K.-i. Shimizu, S. Maeda, T. TaketsuguJ. Phys. Chem. A, 2019, 123, 210-217. |
21 | CO2 Adsorption on Ti3O6-: A Novel Carbonate Binding Motif.S. Debnath, X. Song, M. R. Fagiani, M. Weichman, M. Gao, S. Maeda, T. Taketsugu, W. Schollkopf, A. Lyalin, D. Neumark, K. R. AsmisJ. Phys. Chem. C, 2019, 123, 8439-8446. |
20 | Femtosecond electronic relaxation and real-time vibrational dynamics in 2’-hydroxychalconY. Yamakita, N. Yokoyama, B. Xue, N. Shiokawa, Y. Harabuchi, S. Maeda, T. KobayashiPhys. Chem. Chem. Phys., 2019, 21, 5344-5358 . |
19 | A Reaction Path Network for Wohler's Urea SynthesisY. Sumiya, S. MaedaChem. Lett., 2019, 48, 47-50. |
18 | Excited State Reactivity of [Mn(imidazole)(CO)3(phen)]+: a structural explorationM. Fumanal, Y. Harabuchi, E. Gindensperger, S. Maeda, C. DanielJ. Comput. Chem., 2019, 40, 72-81. |
17 | Resolving the Excited State Relaxation Dynamics of Guanosine Monomers and Hydrogen-Bonded Homodimers in Chloroform SolutionR. A. Ingle, Gareth M. Roberts, Katharina Röttger, Hugo J. B. Marroux, Frank D. Sönnichsen, M. Yang, Łukasz Szyc, Y. Harabuchi, S. Maeda, Friedrich Temps, A. J. Orr-EwingChem. Phys., 2018, 515, 480-492. |
16 | On-the-fly molecular dynamics study of the excited-state branching reaction of α-methyl-cis-stilbeneT. Tsutsumi, Y. Harabuchi, R. Yamamoto, S. Maeda, T. TaketsuguChem. Phys., 2018, 515, 564-571. |
15 | Exploring potential crossing seams in periodic systems: Intersystem crossing pathways in the benzene crystalK. Saita, M. Takagi, Y. Harabuchi, H. Okada, S. MaedaJ. Chem. Phys., 2018, 149, 072329 (9 pages). |
14 | Designing Backbone of Hexasilabenzene Derivatives Possessing a High Unimolecular Kinetic StabilityY. Sumiya, S. MaedaChem. Eur. J., 2018, 24, 12264-12268. |
13 | Low-energy electrocatalytic CO2 reduction in water over Mn-complex catalyst electrode aided by a nanocarbon support and K+ cationsS. Sato, K. Saita, K. Sekizawa, S. Maeda, T. MorikawaAcs Catalysis, 2018, 8, 4452-4458. |
12 | Different Photoisomerization Routes Found in the Structural Isomers of Hydroxy MethylcinnamateS. Kinoshita, Y. Miyazaki, M.Sumida, Y. Onitsuka, H. Kohguchi, Y. Inokuchi, N. Akai, T. Shiraogawa, M. Ehara, K. Yamazaki, Y. Harabuchi, S. Maeda, T. Taketsugu, T. EbataPhys. Chem. Chem. Phys., 2018, 20, 17583-17598. |
11 | Time-Dependent Density Functional Theory Study on Higher Low-Lying Excited States of Au25(SR)18– M. Ebina, T. Iwasa, Y. Harabuchi, T. TaketsuguJ. Phys. Chem. C, 2018, 122, 4097-4104. |
10 | Exploring radiative and nonradiative decay paths in indole, isoindole, quinoline, and isoquinolineY. Harabuchi, K. Saita, S. MaedaPhotochem. Photobiol. Sci., 2018, 17, 315-322. |
9 | Global Reaction Route Mapping for Surface Adsorbed Molecules: A Case Study for H2O on Cu(111) SurfaceS. Maeda, K. Sugiyama, Y. Sumiya, M. Takagi, K. SaitaChem. Lett., 2018, 47, 396-399. |
8 | Analyses of trajectory on-the-fly based on the global reaction route mapT. Tsutsumi, Y. Harabuchi, Y. Ono, S. Maeda, T. TaketsuguPhys. Chem. Chem. Phys., 2018, 20, 1364-1372. |
7 | Implementation and performance of the artificial force induced reaction method in the GRRM17 programS. Maeda, Y. Harabuchi, M. Takagi, K. Saita, K. Suzuki, T. Ichino, Y. Sumiya, K. Sugiyama, Y. OnoJ. Comput. Chem., 2018, 39, 233-251. |
6 | Theoretical study of initial reactions of amine (CH 3 ) n NH (3- n ) ( n = 1, 2, 3) with ozoneA. Furuhama, T. Imamura, S. Maeda, T. TaketsuguChem. Phys. Lett., 2017, 692, 111-116. |
5 | Excess charge driven dissociative hydrogen adsorption on Ti2O4X. W. Song, M. R. Fagiani, S. Debnath, M. Gao, S. Maeda, T. Taketsugu, S. Gewinner, W. Schollkopf, K. R. Asmis, A. LyalinPhys. Chem. Chem. Phys., 2017, 19, 23154-23161. |
4 | Multistructural microiteration technique for geometry optimization and reaction path calculation in large systemsK. Suzuki, K. Morokuma, S. MaedaJ. Comput. Chem., 2017, 38, 2213-2221. |
3 | Global search for low-lying crystal structures using the artificial force induced reaction method: A case study on carbonM. Takagi, T. Taketsugu, H. Kino, Y. Tateyama, K. Terakura, S. MaedaPhys. Rev. B, 2017, 95, 184110 (11 pages). |
2 | An autocatalytic cycle in autoxidation of triethylboraneR. Uematsu, C. Saka, Y. Sumiya, T. Ichino, T. Taketsugu, S. MaedaChem. Commun., 2017, 53, 7302-7305. |
1 | Exploring the full catalytic cycle of rhodium(i)-BINAP-catalysed isomerisation of allylic amines: a graph theory approach for path optimisationT. Yoshimura, S. Maeda, T. Taketsugu, M. Sawamura, K. Morokuma, S. MoriChem. Sci., 2017, 8, 4475-4488. |
123 | Transition-Metal-Free Boryl Substitution Using Silylboranes and Alkoxy BasesE. Yamamoto, S. Maeda, T. Taketsugu, H. ItoSynlett, 2017, 28, 1258-1267. |
122 | Combined gradient projection/single component artificial force induced reaction (GP/SC-AFIR) method for an efficient search of minimum energy conical intersection (MECI) geometriesY. Harabuchi, T. Taketsugu, S. MaedaChem. Phys. Lett., 2017, 674, 141-145. |
121 | Isomerization in Gold Clusters upon O-2 AdsorptionM. Gao, D. Horita, Y. Ono, A. Lyalin, S. Maeda, T. TaketsuguJ. Phys. Chem. C, 2017, 121, 2661-2668. |
120 | Full rate constant matrix contraction method for obtaining branching ratio of unimolecular decompositionY. Sumiya, T. Taketsugu, S. MaedaJ. Comput. Chem., 2017, 38, 101-109. |
119 | Ab Initio Molecular Dynamics Study of the Photoreaction of 1,1 '-Dimethylstilbene upon S-0 -> S-1 ExcitationY. Harabuchi, R. Yamamoto, S. Maeda, S. Takeuchi, T. Tahara, T. TaketsuguJ. Phys. Chem. A, 2016, 120, 8804-8812. |
118 | Propargyl-Assisted Selective Amidation Applied in C-terminal Glycine Peptide ConjugationK. K. Vong, S. Maeda, K. TanakaChem. Eur. J., 2016, 22, 18865-18872. |
117 | Catalytic Hydrogenation of Carbon Dioxide with Ammonia-Borane by Pincer-Type Phosphorus Compounds: Theoretical PredictionG. X. Zeng, S. Maeda, T. Taketsugu, S. SakakiJ. Am. Chem. Soc., 2016, 138, 13481-13484. |
116 | Multistep Intersystem Crossing Pathways in Cinnamate-Based UV-B SunscreensK. Yamazaki, Y. Miyazaki, Y. Harabuchi, T. Taketsugu, S. Maeda, Y. Inokuchi, S. Kinoshita, M. Sumida, Y. Onitsuka, H. Kohguchi, M. Ehara, T. EbataJ. Phys. Chem. Lett., 2016, 7, 4001-4007. |
115 | Theoretical insight into the wavelength-dependent photodissociation mechanism of nitric acidH. Xiao, S. Maeda, K. MorokumaPhys. Chem. Chem. Phys., 2016, 18, 24582-24590. |
114 | Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction MechanismsW. M. Sameera, A. K. Sharma, S. Maeda, K. MorokumaChem. Rec., 2016, 16, 2349-2363. |
113 | Fragmentation network of doubly charged methionine: Interpretation using graph theoryD. T. Ha, K. Yamazaki, Y. Wang, M. Alcami, S. Maeda, H. Kono, F. Martin, E. KukkJ. Chem. Phys., 2016, 145, 094302 (9 pages). |
112 | Orbital Energy-Based Reaction Analysis of S(N)2 ReactionsT. Tsuneda, S. Maeda, Y. Harabuchi, R. K. SinghComputation, 2016, 4, 23 (13 pages). |
111 | Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy SurfacesS. Maeda, Y. Harabuchi, M. Takagi, T. Taketsugu, K. MorokumaChem. Rec., 2016, 16, 2232-2248. |
110 | Theoretical study on mechanism of the photochemical ligand substitution of fac- Re-I(bpy)(CO)(3)(PR3) (+) complexK. Saita, Y. Harabuchi, T. Taketsugu, O. Ishitani, S. MaedaPhys. Chem. Chem. Phys., 2016, 18, 17557-17564. |
109 | Theoretical Study of Hydrogenation Catalysis of Phosphorus Compound and Prediction of Catalyst with High Activity and Wide Application ScopeG. X. Zeng, S. Maeda, T. Taketsugu, S. SakakiAcs Catalysis, 2016, 6, 4859-4870. |
108 | Nonadiabatic Pathways of Furan and Dibenzofuran: What Makes Dibenzofuran Fluorescent?Y. Harabuchi, T. Taketsugu, S. MaedaChem. Lett., 2016, 45, 940-942. |
107 | Computational Catalysis Using the Artificial Force Induced Reaction MethodW. M. Sameera, S. Maeda, K. MorokumaAcc. Chem. Res., 2016, 49, 763-773. |
106 | Contrasting ring-opening propensities in UV-excited alpha-pyrone and coumarinD. Murdock, R. A. Ingle, I. V. Sazanovich, I. P. Clark, Y. Harabuchi, T. Taketsugu, S. Maeda, A. J. Orr-Ewing, M. N. R. AshfoldPhys. Chem. Chem. Phys., 2016, 18, 2629-2638. |
105 | The effect of Mg2+ incorporation on the structure of calcium carbonate clusters: investigation by the anharmonic downward distortion following methodJ. Kawano, S. Maeda, T. NagaiPhys. Chem. Chem. Phys., 2016, 18, 2690-2698. |
104 | Deciphering Time Scale Hierarchy in Reaction NetworksY. Nagahata, S. Maeda, H. Teramoto, T. Horiyama, T. Taketsugu, T. KomatsuzakiJ. Phys. Chem. B, 2016, 120, 1961-1971. |
103 | Nontotally symmetric trifurcation of an S(N)2 reaction pathwayY. Harabuchi, Y. Ono, S. Maeda, T. Taketsugu, K. Keipert, M. S. GordonJ. Comput. Chem., 2016, 37, 487-493. |
102 | Exploring the Mechanism of Ultrafast Intersystem Crossing in Rhenium(I) Carbonyl Bipyridine Halide Complexes: Key Vibrational Modes and Spin-Vibronic Quantum DynamicsY. Harabuchi, J. Eng, E. Gindensperger, T. Taketsugu, S. Maeda, C. DanielJ. Chem. Theory Comput., 2016, 12, 2335-2345. |
29 | Automated exploration of adsorption structures of an organic molecule on RuH2-BINAP by the ONIOM method and the scaled hypersphere search methodS. Maeda, K. OhnoJ. Phys. Chem. A, 2007, 111, 13168-13171. |
28 | Quantum chemistry study of H+(H2O)(8): A global search for its isomers by the scaled hypersphere search method, and its thermal behaviorY. Luo, S. Maeda, K. OhnoJ. Phys. Chem. A, 2007, 111, 10732-10737. |
27 | Global reaction route mapping on potential energy surfaces Of C2H7+ and C3H9+Y. Watanabe, S. Maeda, K. OhnoChem. Phys. Lett., 2007, 447, 21-26. |
26 | Insight into global reaction mechanism of C-2, H-4, O system from ab initio calculations by the scaled hypersphere search methodX. Yang, S. Maeda, K. OhnoJ. Phys. Chem. A, 2007, 111, 5099-5110. |
25 | Structures of water octamers (H2O)(8): Exploration on ab initio potential energy surfaces by the scaled hypersphere search methodS. Maeda, K. OhnoJ. Phys. Chem. A, 2007, 111, 4527-4534. |
4 | Collision-energy-resolved Penning ionization electron spectroscopy of OCS with He*(2(3)S) metastable atomsN. Kishimoto, T. Horio, S. Maeda, K. OhnoChem. Phys. Lett., 2003, 379, 332-339. |
3 | A new method for constructing multidimensional potential energy surfaces by a polar coordinate interpolation techniqueS. Maeda, K. OhnoChem. Phys. Lett., 2003, 381, 177-186. |
2 | Classical trajectory calculations for collision-energy/electron-energy resolved two-dimensional Penning ionization electron spectra of N-2, CO, and CH3CN with metastable He-*(2(3)S) atomsM. Yamazaki, S. Maeda, N. Kishimoto, K. OhnoJ. Chem. Phys., 2002, 117, 5707-5721. |
1 | Classical trajectory calculations of collision energy dependence of Penning ionization cross-sections for N-2 and CO by He*2(3)S; optimization of anisotropic model potentialsM. Yamazaki, S. Maeda, N. Kishimoto, K. OhnoChem. Phys. Lett., 2002, 355, 311-318. |