HOME > Member > Andrey LYALIN

Andrey LYALIN

 

Associate Professor
Institute for Chemical Reaction Design and Discovery (ICReDD)
Hokkaido University
Science 7th bldg, room 503
Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan

Phone: 011-706-3821; Fax: 011-706-3535
E-mail: lyalin@icredd.hokudai.ac.jp
Personal webpage: http://sites.google.com/site/andylyalin

 
 

Profile

Jan. 1992 M.S. (diploma with excellence), St Petersburg State University, Russia.
Dec. 1995 Ph.D in Physics and Mathematics, St. Petersburg State University, Russia.
1995〜1996 Junior Researcher, V.A. Fock Institute of Physics, St Petersburg State University, Russia.
1997 Guest Researcher, Department of Physics and Astronomy, Pittsburgh University, USA.
1996〜1999 Researcher, V.A. Fock Institute of Physics, St Petersburg State University, Russia.
2000 The Royal Society and NATO Fellowship, Imperial College London, United Kingdom.
2001〜2014 Senior Research Scientist, V.A. Fock Institute of Physics, St Petersburg State Uni., Russia.
2001 Guest Researcher, Institute for Theoretical Physics, Frankfurt am Main Uni., Germany.
2002〜2004 Alexander von Humboldt Fellowship, Institute for Theoretical Physics, Frankfurt, Germany.
2005〜2008 Researcher, Frankfurt Institute for Advanced Studies, Frankfurt am Main Uni., Germany.
2007〜2008 Research Associate, Imperial College London, United Kingdom.
2008〜2012 Researcher, Department of Chemistry, Faculty of Science, Hokkaido University, Japan.
2013〜2015 Assistant Professor, Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Japan.
2015〜2019 Special Researcher, Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba, Japan.
2019〜now Visiting Researcher, Interface Computational Science Group, Center for Green Research on Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Japan.
2019〜now Associate Professor, Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Japan.
 

Publications

 


2019

1. The Role of Nitrogen-doping and the Effect of the pH on the Oxygen Reduction Reaction on Highly Active Nitrided Carbon Sphere Catalysts, M. Eckardt, K. Sakaushi, A. Lyalin, M. Wassner, N. Hüsing, T. Taketsugu, and R.J. Behm, Electrochim. Acta, 299, 736-748 (2019).
2. Soft X-ray Li-K and Si-L2,3 Emission from Crystalline and Amorphous Lithium Silicides in Lithium-ion Batteries Anode, A. Lyalin, V. G. Kuznetsov, A. Nakayama, I. V. Abarenkov, I. I. Tupitsyn, I. E. Gabis, K. Uosaki, and T. Taketsugu, J. Electrochem. Soc., 166, A5362-A5368 (2019).
3. Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu13, T. Iwasa, T. Sato, M. Takagi, M. Gao, A. Lyalin, M. Kobayashi, K.-I. Shimizu, S. Maeda, and T. Taketsugu, J. Phys. Chem. A, 123, 210-217 (2019).
4. CO2 Adsorption on Ti3O6: A Novel Carbonate Binding Motif, S. Debnath, X. Song, M. R. Fagiani, M. L. Weichman, M. Gao, S. Maeda, T. Taketsugu, W. Schöllkopf, A. Lyalin, D. M. Neumark, and K. R. Asmis, J. Phys. Chem. C, 123, 8439-8446 (2019).
 


2018

1. Quantum-to-Classical Transition of Proton Transfer in Potential-Induced Dioxygen Reduction, K. Sakaushi, A. Lyalin, T. Taketsugu, and K. Uosaki, Phys. Rev. Lett., 121, 236001 (2018).
2. Microscopic Electrode Processes in the Four-Electron Oxygen Reduction on Highly-Active Carbon-based Electrocatalysts, K. Sakaushi, M. Eckardt, A. Lyalin, T. Taketsugu, R. J. Behm, and K. Uosaki, ACS Catal., 8, 8162-8176 (2018).
3. Lithiation Products of a Silicon Anode Based on Soft X-ray Emission Spectroscopy: A Theoretical Study, A. Lyalin, V. G. Kuznetsov, A. Nakayama, I. V. Abarenkov, I. I. Tupitsyn, I. E. Gabis, K. Uosaki, and T. Taketsugu, J. Phys. Chem. C, 122, 11096-11108 (2018).
4. Synthesis of armchair graphene nanoribbons from the 10,10′-dibromo-9,9′-bianthracene molecules on Ag(111): the role of organometallic intermediates, K. A. Simonov, A. V. Generalov, A. S. Vinogradov, G. I. Svirskiy, A. A. Cafolla, C. McGuinness, T. Taketsugu, A. Lyalin, N. Mårtensson, and A. B. Preobrajenski, Scientific Reports, 8, 3506 (2018).
5. Oxygen Reduction Reaction Catalyzed by Small Gold Cluster on h-BN/Au(111) Support, A. Lyalin, K. Uosaki, and T. Taketsugu, Electrocatalysis, 9, 182-188 (2018).
 


2017

1. Excess Charge Driven Dissociative Hydrogen Adsorption on Ti2O4, X. Song, M. R. Fagiani, S. Debnath, M. Gao, S. Maeda, T. Taketsugu, S. Gewinner, W. Schöllkopf, K. R. Asmis and A. Lyalin, Phys. Chem. Chem. Phys., 19, 23154-23161 (2017).
2. Two-Dimensional Corrugated Porous Carbon-, Nitrogen-Framework/Metal Heterojunction for Efficient Multi-Electron Transfer Processes with Controlled Kinetics, K. Sakaushi, A. Lyalin, S. Tominaka, T. Taketsugu, and K. Uosaki, ACS Nano, 11, 1770-1779 (2017).
3. Interface Effects in Hydrogen Elimination Reaction from Isopropanol by Ni13 Cluster on θ-Al2O3(010) Surface, A. Lyalin, K-I. Shimizu, and T. Taketsugu, J. Phys. Chem. C, 121, 3488-3495 (2017).
4. Isomerization in Gold Clusters upon O2 Adsorption, M. Gao, D. Horita, Y. Ono, A. Lyalin, S. Maeda, and T. Taketsugu, J. Phys. Chem. C, 121, 2661-2668 (2017).
5. Atomically Thin Hexagonal Boron Nitride Nanofilm for Cu Protection: The Importance of Film Perfection, M. H. Khan, S. S. Jamali, A. Lyalin, P. J. Molino, L. Jiang, H. K. Liu, T. Taketsugu, and Z. Huang, Adv. Mater., 29, 1603937 (2017).
 


2016

1. Highly Efficient Electrochemical Hydrogen Evolution Reaction at Insulating Boron Nitride Nanosheet on Inert Gold Substrate, K. Uosaki, G. Elumalai, H. C. Dinh, A. Lyalin, T. Taketsugu, and H. Noguchi, Scientific Reports, 6, 32217 (2016).
2. When Inert Becomes Active: A Fascinating Route for Catalyst Design, A. Lyalin, M. Gao, and T. Taketsugu, The Chemical Record, 16, 2324-2337 (2016).
3. Gold Nanoparticle Decoration of Insulating Boron Nitride Nanosheet on Inert Gold Electrode Towards an Efficient Electrocatalyst for the Reduction of Oxygen to Water, G. Elumalai, H. Noguchi, A. Lyalin, T. Taketsugu, and K. Uosaki, Electrochem. Commun., 6, 53-57 (2016).
4. Long Range Functionalization of h-BN Monolayer by Carbon Doping, M. Gao, M. Adachi, A. Lyalin, and T. Taketsugu, J. Phys. Chem. C, 120, 15993-16001 (2016).
 


2015

1. Reactivity of gold clusters in the regime of structural fluxionality, M. Gao, A. Lyalin, M. Takagi, S. Maeda, and T. Taketsugu, J. Phys. Chem. C, 119, 11120-11130 (2015).
2. From graphene nanoribbons on Cu (111) to nanographene on Cu (110): Critical role of substrate structure in the bottom-up fabrication strategy, K.A. Simonov, N.A. Vinogradov, A.S. Vinogradov, A.V. Generalov, E.M. Zagrebina, G.I. Svirskiy, A.A. Cafolla, T. Carpy, J.P. Cunniffe, T. Taketsugu, A. Lyalin, N. Mårtensson, and A.B. Preobrajenski, ACS Nano, 9, 8997-9011 (2015).
 


2014

1. Application of automated reaction path search methods to a systematic search of single-bond activation pathways catalyzed by small metal clusters: A case study on H-H activation by gold, M. Gao, A. Lyalin, S. Maeda, and T. Taketsugu, J. Chem. Theory Comp. 10, 1623-1630 (2014).
2. Adsorption and catalytic activation of the molecular oxygen on the metal supported h-BN, A. Lyalin, A. Nakayama, K. Uosaki, and T. Taketsugu, Topics in Catalysis, 57, 1032-1041 (2014).
3. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction – Theoretical suggestion and experimental proof, K. Uosaki, G. Elumalai, H. Noguchi, T. Masuda, A. Lyalin, A. Nakayama, and T. Taketsugu, J. Am. Chem. Soc. (Communication), 136, 6542-6545 (2014).
 


2013

1. Functionalization of Monolayer hBN by a Metal Support for the Oxygen Reduction Reaction, A. Lyalin, A. Nakayama, K. Uosaki, and T. Taketsugu, J. Phys. Chem. C 117, 21359-21370 (2013).
2. Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction, A. Lyalin, A. Nakayama, K. Uosaki, and T. Taketsugu, Phys. Chem. Chem. Phys. 15, 2809–2820 (2013).
3. CO oxidation on h-BN supported Au atom, M. Gao, A. Lyalin, and T. Taketsugu, J.Chem. Phys. 138, 034701 (2013).
4. Oxygen activation and dissociation on h-BN supported Au atoms, M. Gao, A. Lyalin, and T. Taketsugu, Int. J. Quantum Chem. 113, 443-452 (2013).
5. The h-BN surface effect on CO oxidation reaction catalyzed by supported gold atom, M. Gao, A. Lyalin, and T. Taketsugu, J. Phys.: Conf. Ser. 438, 012003 (2013).
 


2012

1. Catalytic activity of Au and Auon h-BN surface: adsorption and activation of O2, M. Gao, A. Lyalin, and T. Taketsugu, J. Phys. Chem. C 116, 9054–9062 (2012).
 


2011

1. Role of the support effects on the catalytic activity of gold clusters: a density functional theory study, M. Gao, A. Lyalin, and T. Taketsugu, Catalysts 1, 18-39 (2011).
2. A computational investigation of Hadsorption and dissociation on Au nanoparticles supported on TiOsurface, A. Lyalin and T. Taketsugu, Faraday Discussions 152, 185-201 (2011).
 


2010

1. Reactant promoted oxygen dissociation on gold clusters, A. Lyalin and T. Taketsugu, J. Phys. Chem. Lett. 1, 1752-1757 (2010).
2. Adsorption of ethylene on neutral, anionic and cationic gold clusters, A. Lyalin and T. Taketsugu, J. Phys. Chem. C 114, 2484-2493 (2010).
 


2009

1. Cooperative adsorption of Oand C2Hon small gold clusters, A. Lyalin and T. Taketsugu, J. Phys. Chem. C 113, 12930-12934 (2009).
2. Impurity effect on the melting of nickel clusters as seen via molecular dynamics simulations, A. Lyalin, A. Hussien, A. Solov’yov, and W. Greiner, Phys. Rev. B 79, 165403 (2009).
3. Catalytic activity of gold clusters, A. Lyalin and T. Taketsugu, AIP Conference Proceedings 1197, eds. A. Solov’yov and E. Surdutovich, pp. 65-75 (2009).
 


2008

1. Droplet model of an atomic cluster at a solid surface, V. Semenikhina, A. Lyalin, A. V. Solov’yov, and W. Greiner, JETP 106, 678-689 (2008).
2. Magnetism in atomic clusters, A. Lyalin, A. V. Solov’yov, and W. Greiner, in Latest Advances in Atomic Cluster Collisions: structure and dynamics from the nuclear to the biological scale (edited by J.-P. Connerade and A. V. Solov’yov), pp. 86 – 104, Imperial College Press, London (2008).
3. Strontium clusters: electronic and geometry shell effects, A. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Latest Advances in Atomic Cluster Collisions: structure and dynamics from the nuclear to the biological scale (edited by J.-P. Connerade and A. V. Solov’yov), pp. 105 – 127, Imperial College Press, London (2008).
4. Simulation of the nanoindentation procedure on Nickel on the smallest length scale: a simple atomistic level model, P. Berke, M.-P. Delplancke-Ogletree, A. Lyalin, V. V. Semenikhina, and A. V.Solov’yov, Latest Advances in Atomic Cluster Collisions: structure and dynamics from the nuclear to the biological scale (edited by J.-P. Connerade and A.V. Solov’yov), pp. 205 – 224, Imperial College Press, London (2008).
5. The third international symposium “Atomic Cluster Collisions: structure and dynamics from the nuclear to the Meso-Bio-Nano scale” (ISACC 2008), A. Lyalin, A. V. Solov’yov, Europhysics News 39(6), p. 7 (2008).
 


2007

1. Interplay of electronic and geometry shell effects in properties of neutral and charged Sr-clusters, A. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A 75, 053201 (2007).
2. Stability of charged atomic clusters, A. Lyalin, O. I. Obolensky, A. V. Solov’yov, and W. Greiner, Romanian Reports in Physics 59, 499-513 (2007).
 


2006

1. Structure and magnetism of lanthanum clusters, A. Lyalin, A. V. Solov’yov, and W. Greiner, Phys. Rev. A 74, 043201 (2006).
2. Fission of metal clusters (Review), A. Lyalin, O. I. Obolensky, A. V. Solov’yov and W. Greiner, Int. J. Mod. Phys. E 15, 153-195 (2006).
3. Polarizational bremsstrahlung from atomic clusters (Review), A. G. Lyalin and A. V. Solov’yov, Radiation Physics and Chemistry 75, 1358-1379 (2006).
 


2005

1. Stability of small neutral and charged strontium clusters (Letter) A. Lyalin, A. V. Solov’yov, C. Brechignac, and W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 38, L129-L135 (2005).
2. Dissociation and fission of small sodium and strontium clusters, A. Lyalin, O. I. Obolensky, A. V. Solov’yov, and W. Greiner, Eur. Phys. J. D 34, 93-96 (2005).
3. Geometrical and statistical factors in fission of small metal clusters, O. I. Obolensky, A. G. Lyalin, A. V. Solov’yov, and W. Greiner, Phys. Rev. B 72, 085433 (2005).
 


2004

1. Rearrangement of cluster structure during fission processes (Letter), A. G. Lyalin, O. I. Obolensky, A. V. Solov’yov, I. A. Solov’yov, and W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 37, L7-L13 (2004).
2. Molecular dynamics simulations of cluster fission and fussion processes, A. Lyalin, O. Obolensky, I. Solov’yov, A. Solov’yov, and W. Greiner, Physica Scripta, T110, 319-324 (2004).
3. Metal cluster fission: jellium model and molecular dynamics simulations, A. Lyalin, O. Obolensky, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, in Latest Advances in Atomic Cluster Collisions: Fission, Fusion, Electron, Ion and Photon Impact (edited by J.-P. Connerade and A. V. Solov’yov), ISBN 1-86094-495-7, pp. 157-168, Imperial College Press, London (2004).
4. Ab initio calculations and modelling of atomic cluster structure, I. A. Solov’yov, A. Lyalin, A. V. Solov’yov, and W. Greiner, in Latest Advances in Atomic Cluster Collisions: Fission, Fusion, Electron, Ion and Photon Impact (edited by J.-P. Connerade and A. V. Solov’yov), ISBN 1-86094-495-7, pp. 51-65, Imperial College Press, London (2004).
 


2003

1. On the applicability of jellium model to the description of alkali clusters, A. Matveentzev, A. G. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, International Journal of Modern Physics E 12, 81-107 (2003).
2. Evolution of electronic and ionic structure of Mg-clusters with the growth cluster size, A. G. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A 67,063203 (2003).
3. On the applicability of deformed jellium model to the description of metal clusters, A. G. Lyalin, A. Matveentzev, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Eur. Phys. J. D 24, 15-18 (2003).
4. Metal cluster fission, A. G. Lyalin, O. I. Obolensky, A. V. Solov’yov, and W. Greiner, Proceedings of the Third International Conference on Fission and Neutron-Rich Nuclei, pp. 472-479, Sanibel Island, Florida, US, November 3 – 9, 2002, (ed. J. Hamilton, A. V. Ramayya, H. K. Carter), ISBN 981-238-386-7, World Scientific (2003).
 


2002

1. Hartree-Fock approach for metal-clusters fission, A. G. Lyalin, S. K. Semenov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A 65, 023201 (2002).
2. Comparative study of metal cluster fission in Hartree-Fock and local density approximation, A. G. Lyalin, A. V. Solov’yov, and W. Greiner, Phys. Rev. A 65, 043202 (2002).
3. On the stripping approximation in the bremsstrahlung process, A. V. Korol, A. G. Lyalin, A. V. Solov’yov, N. Avdonina, and R. H. Pratt, J. Phys. B: At. Mol. Opt. Phys. 35, 1197-1210 (2002).
4. A relativistic description of the polarization mechanism of elastic bremsstrahlung, A. V. Korol, A. G. Lyalin, O. I. Obolensky, A. V. Solov’yov, and I. A. Solovjev, JETP 94, 704-719 (2002).
 


2001

1. Hartree-Fock deformed jellium calculations for metallic clusters, A. G. Lyalin, S. K. Semenov, A. V. Solov’yov, N. A. Cherepkov, J.-P. Connerade, and W. Greiner, J. Chin. Chem. Soc. 48, 419-426 (2001).
2. A simple atomic model for hydrogen confined inside a prolate-shaped C60 fullerene cage, J.-P. Connerade, A. G. Lyalin, R. Semaoune, S. K. Semenov, and A. V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 34, 2505-2511 (2001).
3. Polarizational bremsstrahlung on atoms and ions: Relativistic and non-relativistic cases, A. V. Korol, A. G. Lyalin, O. I. Obolensky, I. A. Solovjev and A. V. Solov’yov, AIP Conference Proceedings 576, pages 64-67 (2001).
 


2000

1. Manifestation of the Bethe Ridge in the Polarisational Bremsstrahlung Process (Letter), A. V. Korol, A. G. Lyalin, O. I. Obolensky, and A. V. Solovy’ov, J. Phys. B: At. Mol. Opt. Phys. 33, L179-L186 (2000).
2. Hartree-Fock deformed jellium model for metallic clusters, A. G. Lyalin, S. K. Semenov, A. Solov’yov, N. Cherepkov, and W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 33, 3653-3664 (2000).
 


1999

1. Cross section for bremsstrahlung of electrons colliding with atoms with polarizational mechanism taken into account in a broad spectral range, A. V. Korol, A. G. Lyalin, and A. V. Solov’yov, Optics and spectroscopy 86(4), 486 (1999).
 


1998

1. The role of the polarization mechanism for emission of radiation by atoms over a broad photon frequency range, A. V. Korol, A. G. Lyalin, O. I. Obolenski, and A. V. Solov’yov, JETP 87(2), 251-259 (1998).
 


1997

1. Total bremsstrahlung spectra of 1-25 keV electrons on Ne and Ar, A. V. Korol, A. G. Lyalin, and A. V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 30, L115-L121 (1997).
2. Giant resonances in photon emission spectra of atoms, clusters and solid state, L. G.Gerchikov, A. V. Korol, A. G. Lyalin, and A. V. Solov’yov, X-Ray and Inner-Shell Processes, 17th International Conference, Hamburg, Germany 1996, eds. R. L. Johnson, H. Schmidt-Boecking and B. F. Sonntag, AIP Conference Proceedings 389, pages 447-464, AIP Press Woodbury, New York (1997).
 


1996

1. Theoretical treatment of bremsstrahlung spectra in the vicinity of giant atomic resonances, A. V. Korol, A. G. Lyalin, and A. V. Solov’yov, Phys. Rev. A 53, 2230-2238 (1996).
2. Bremsstrahlung of an intermediate energy electron on La, A. V. Korol, A. G. Lyalin, A. S. Shulakov, and A. V. Solov’yov, JETP 82(4), 631-638 (1996).
3. Electron bremsstrahlung spectra on La near the 4d-threshold (Letter), A. V. Korol, A. G. Lyalin, A. S. Shulakov, and A. V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 29, L611-L617 (1996).
4. Semi-empirical method for the polarizational bremsstrahlung calculation, A. V. Korol, A. G. Lyalin, A. S. Shulakov, and A. V. Solov’yov, J. Elect. Spect. Rel. Phenom. 79, 323-326 (1996).
5. Bremsstrahlung in collisions of electrons with atoms and clusters, A. V. Korol, A. G. Lyalin, and A. V. Solov’yov, in “Selected Topics on Electron Physics” ed. D. M. Campbell and H. Kleinpoppen, Plenum Press: NY, pp. 263-278 (1996).
 


1995

1. Theoretical treatment of bremsstrahlung spectra in vicinity of giant atomic resonances: application to Ba (Letter), A. V. Korol, A. G. Lyalin, A. S. Shulakov, and A. V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 28, L155-L160 (1995).
2. New method for the polarizational bremsstrahlung calculation, A. V. Korol, A. G. Lyalin, and A. V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 28, 4947-4962 (1995).
 


1994

1. Use of atomic bremsstrahlung model to describe resonance emission in the x-ray K-spectrum of boron in hexagonal BN crystal, A. G. Lyalin, and A. S. Shulakov, Phys. Solid State 36, 1693-1697 (1994).
 


1993

1. Electron stimulated desorption of F atoms from LiF and NaF crystal, A. S. Shulakov and A. G. Lyalin, Opt. i spectr. 74(3), 447-454 (1993) (in Russian).
 

Books

1. Basics of Physics of Polarizational Bremsstrahlung Processes,
A. V. Korol, A. G. Lyalin, and A. V. Solov’yov, Publishing House of St. Petersburg State Polytechnic University, St Petersburg, pp.1-300 (2010) (in Russian).
2. Polarizational Bremsstrahlung, A. V. Korol, A. G. Lyalin, and A. V. Solov’yov, Publishing House of St. Petersburg State Polytechnic University, St Petersburg, ISBN 5-7422-0565-1, pp.1-300 (2004) (in Russian).
 

Awards

1993〜1995 Russian President’s award for the outstanding progress in study and scientific researches, Russia.
1997 Personal Grant of the Ministry of Science of the Russian Federation for outstanding young scientists, Russia.
1997〜2000 Prize winner of the Russian Government’s competition for outstanding young scientists, Russia.
1998〜1999 Prize winner of the St. Petersburg city competition for young scientist, Russia.
2000 The Royal Society and NATO Fellowship, Imperial College London, United Kingdom. Theme: “Hartree-Fock deformed jellium model for metal clusters” (host Prof. J.-P. Connerade).
2001 Prize winner of the competition for young scientists supported by the Russian Foundation of Basic Research (RFBR 01-02-06451), Russia.
2002〜2004 Alexander von Humboldt Fellowship of the AvH Foundation, Institute for Theoretical Physics, Johann Wolfgang Goethe University, Frankfurt am Main, Germany. Theme: “Many-body theory for deformed metal clusters” (host Prof. Dr. Walter Greiner).

Pagetop