ホーム > メンバー紹介 > 岩佐 豪

岩佐 豪

北海道大学大学院 理学研究院化学部門量子化学研究室 助教
(兼任)JSTさきがけ「反応制御」北大WPI-ICReDD
専門:理論物理化学、分子物理学、量子化学
研究内容:近接場光化学、ナノ分光理論、光学応答、励起状態と発光、クラスター化学
〒060-0810 札幌市北区北10条西8丁目理学部7号館
ORCID, Publon, Researchmap, KAKEN, 研究者データ
iwasa-2iwasa-1

経歴

2003年4月〜2004年3月 北海道大学 理学部化学科 錯体化学研究室(佐々木陽一教授)
2004年4月〜2006年3月 北海道大学大学院 理学研究科化学専攻 量子化学研究室
(田中晧教授–>武次徹也教授)
2005年4月〜2006年3月 分子科学研究所 依託学生 (信定研)
2006年4月〜2009年3月 総合研究大学院大学 物理科学研究科構造分子科学専攻博士後期課程
分子科学研究所 (信定克幸 准教授)
博士(理学) (指導教官: 信定克幸 准教授)
2008年4月〜2009年3月 日本学術振興会特別研究員(DC2、分子研信定G)
2009年4月〜2010年3月 日本学術振興会特別研究員(継続、PD、分子研信定G)
2010年4月〜2014年9月 JST-ERATO 中嶋ナノクラスター集積制御プロジェクト 博士研究員
2010年5月〜2014年3月 (兼任) 慶應義塾大学大学院理工学研究科 特任助教
2014年4月〜2014年9月 (兼任) 慶應義塾大学大学院理工学研究科 特任講師
2014年10月〜現在 北海道大学大学院理学研究院 助教
2015年4月〜2022年3月 (兼任) 京都大学触媒・電池元素戦略研究拠点ユニット 拠点助教
2019年4月〜現在 (兼任) 北海道大学化学反応創成研究拠点 (WPI-ICReDD) 助教
2020年11月〜2025年3月 (兼任) 科学技術振興機構さきがけ「反応制御」研究者
 

受賞

1. 2015年5月 第18回理論化学討論会: 優秀講演賞
2. 2021年10月 第7回北海道大学部局横断シンポジウム:ベストポスター賞
3. 2023年6月22日 The 14th Asia-Pacific Conference on Near-field Optics (APNFO 14) : BEST POSTER AWARD
 

論文

2024

57. Optical force and torque in near-field excitation of C3H6: A first-principles study using RT-TDDFT
R. Amano, D. Nishizawa, T. Taketsugu, T. Iwasa*, J. Chem. Phys., 161, 124110 (2024). プレスリリース
56. Near-field induced local excitation dynamics of Na10 and Na10-N2 from real-time TDDFT
D. Nishizawa, R. Amano, T. Taketsugu, T. Iwasa*, J. Chem. Phys., 161, 054309 (2024). プレスリリース
Invited Article to Special Collection: Plasmon-mediated Nonlinear Optics and Dynamics
55. Generalized Transition Moment and Oscillator Strength for Optimal Control of Excited States using Near-Field Light
T. Iwasa*, J. Phys. Chem. Lett., 15, 4775-4781 (2024). Supplementary Cover
プレスリリース北大JST日本経済新聞にも掲載されました!

2023

54. Key factors for connecting silver-based icosahedral superatoms by vertex sharing
S. Miyajima, S. Hossain*, A. Ikeda, T. Kosaka, T. Kawawaki, Y. Niihori, T. Iwasa*, T. Taketsugu & Y. Negishi*, Commun. Chem., 6, 57 (2023). (Open Access、プレスリリース)
日刊工業新聞にも掲載されました!電子版はこちら

2022

53. Excited States of Metal-Adsorbed Dimethyl Disulfide: A TDDFT Study with Cluster Model
K. Toda, Y. Hirose, E. Kazuma, Y. Kim, T. Taketsugu, T. Iwasa*, J. Phys. Chem. A, 126, 4191-4198 (2022). (Open Access)
Selected to a virtual issue Photodissociation: from Fundamental Dynamics and Spectroscopy to Photochemistry in Planetary Atmospheres and in Space.
52. Doping-Mediated Energy-Level Engineering of M@Au12 Superatoms (M = Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis
H. Hirai, S. Takano, T. Nakashima, T. Iwasa, T. Taketsugu, T. Tsukuda*, Angew. Chem. Int. Ed., e202207290 (2022).

2021

51. Structural Characterization of Nickel Doped Aluminum Oxide Cations by Cryogenic Ion Trap Vibrational Spectroscopy
Y. Li, M. C. Babin, S. Debnath, T. Iwasa, S. Kumar, T. Taketsugu, K. R. Asmis*, A. Lyalin*, and D. M. Neumark*, J. Phys. Chem. A, 125, 9527-9535 (2021).
50. Barium Oxide Encapsulating Cobalt Nanoparticles Supported on Magnesium Oxide: Active Non-noble Metal Catalyst for Ammonia Synthesis under Mild Reaction Conditions
K. Sato*, S. Miyahara, K. Tsujimaru, Y. Wada, T. Toriyama, T. Yamamoto, S. Matsumura, K. Inazu, H. Mohri, T. Iwasa, T. Taketsugu, K. Nagaoka*, ACS Catal., 11, 13050-13061 (2021). 名大プレスリリースマイナビニュース
49. A comparative study of structural, electronic, and optical properties of thiolated gold clusters with icosahedral vs face-centered cubic cores
M. Miyamoto, T. Taketsugu, T. Iwasa*, J. Chem. Phys., 155, 094304 (2021).
Invited Article to Special Collection: From Atom-Precise Nanoclusters to Superatom Materials
48. Photoluminescence of Doped Superatoms M@Au12 (M = Ru, Rh, Ir) Homoleptically Capped by (Ph2)PCH2P(Ph2): Efficient Room-Temperature Phosphorescence from Ru@Au12
S. Takano, H. Hirai, T. Nakashima, T. Iwasa, T. Taketsugu, and T. Tsukuda*, J. Am. Chem. Soc. (Communication), 143(28), 10560-10564 (2021).
47. [Ag23Pd2(PPh3)10Cl7]0: A New Family of Synthesizable Bi-icosahedral Superatomic Molecules
S. Hossain, S. Miyajima, T. Iwasa*, R. Kaneko, T. Sekine, A. Ikeda, T. Kawawaki, T. Taketsugu, and Y. Negishi*, J. Chem. Phys., 155, 024302 (2021).
Invited Article to Special Collection: From Atom-Precise Nanoclusters to Superatom Materials
46. Single-molecule laser nanospectroscopy with micro–electron volt energy resolution
H. Imada*, M. Imai-Imada, K. Miwa, H. Yamane, T. Iwasa, Y. Tanaka, N. Toriumi, K. Kimura, N. Yokoshi, A. Muranaka, M. Uchiyama, T. Taketsugu, Y. K. Kato, H. Ishihara, Y. Kim*, Science, 373, 95-98 (2021). (Press release)
45. Theoretical method for near-field Raman spectroscopy with multipolar Hamiltonian and real-time-TDDFT: Application to on- and off-resonance tip-enhanced Raman spectroscopy
M. Takenaka, T. Taketsugu, T. Iwasa*, J. Chem. Phys., 154, 024104 (2021).
44. Effects of Support Materials and Ir Loading on Catalytic N2O Decomposition Properties
S. Hinokuma*, T. Iwasa, Y. Kon, T. Taketsugu, K. Sato, Catal. Commun., 149, 106208 (2021).

2020

43. N2O Decomposition Properties of Ru Catalysts Supported on Various Oxide Materials and SnO2
S. Hinokuma*, T. Iwasa, Y. Kon, T. Taketsugu, K. Sato, Sci. Rep., 10, 21605 (2020).
42. Determining and Controlling Cu-Substitution Sites in Thiolate-Protected Gold-Based 25-Atom Alloy Nanoclusters
S. Hossain, D. Suzuki, T. Iwasa, R. Kaneko, T. Suzuki, S. Miyajima, Y. Iwamatsu, S. Pollitt, T. Kawawaki, N. Barrabés, G. Rupprechter, Y. Negishi*, J. Phys. Chem. C, 124(40), 22304-22313 (2020).
41. Ammonia Combustion Properties of Copper Oxides-based Honeycomb and Granular Catalysts
S. Hinokuma*, T. Iwasa, K. Araki, Y. Kawabata, S. Matsuki, T. Sato, Y. Kon, T. Taketsugu, K. Sato, M. Machida, J. Jpn. Petrol. Inst., 63, 274-281 (2020).
40. Combined Computational Quantum Chemistry and Classical Electrodynamics Approach for Surface Enhanced Infrared Absorption Spectroscopy
M. Takenaka, T. Taketsugu, T. Iwasa*, J. Chem. Phys., 152, 164103 (2020).
39. Photo-Induced Pyramidal Inversion Behavior of Phosphines Involved with the Aggregation-Induced Emission (AIE) Behavior
T. Machida, T. Iwasa, T. Taketsugu, K. Sada*, K. Kokado*, Chem. Eur. J., 26, 8028-8034 (2020).
38. Single-molecule resonance Raman effect in a plasmonic nanocavity
R. B. Jaculbia, H. Imada*, K. Miwa, T. Iwasa, M. Takenaka, B. Yang, E. Kazuma, N. Hayazawa*, T. Taketsugu, Y. Kim*, Nat. Nanotechnol., 15, 105-110 (2020). (view-only free pdf, 理学部ニュース).

2019

37. Roles of silver nanoclusters in surface-enhanced Raman spectroscopy
T. Tsuneda*, T. Iwasa, T. Taketsugu, J. Chem. Phys., 151, 094102 (2019) [10 pages].
36. Low-lying Excited States of hqxcH and Zn-hqxc Complex: Toward Understanding Intramolecular Proton Transfer Emission
M. Ebina, Y. Kondo, T. Iwasa*, T. Taketsugu*, Inorg. Chem., 58(7), 4686-4698 (2019).
35. Photoluminescence Properties of [Core+exo]-Type Au6 Clusters: Insights into the Effect of Ligand Environments on the Excitation Dynamics
Y. Shichibu*, M. Zhang, T. Iwasa, Y. Ono, T. Taketsugu, S. Omagari, T. Nakanishi, Y. Hasegawa, K. Konishi*, J. Phys. Chem. C, 123(11), 6934-6939 (2019).
34. Ammonia-rich combustion and ammonia combustive decomposition properties of various supported catalysts
S. Hinokuma*, K. Araki, T. Iwasa, S. Kiritoshi, Y. Kawabata, T. Taketsugu, and M. Machida, Catal. Commun., 123, 64-68 (2019).
33. Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu13
T. Iwasa*, T. Sato, M. Takagi, M. Gao, A. Lyalin, M. Kobayashi, K. Shimizu, S. Maeda, T. Taketsugu*, J. Phys. Chem. A, 123, 210-217 (2019).
32. 金・銀・銅クラスターの安定構造,異性化反応経路,およびNO解離反応経路の探索とその電子物性
近藤有輔,高原里奈,毛利広野,高木牧人,前田理,岩佐豪*, 武次徹也, J. Comput. Chem. Jpn., 18, 64-69 (2019).
31. First principles calculations toward understanding SERS of 2,2′-bipyridyl adsorbed on Au, Ag and Au-Ag nanoalloy
M. Takenaka, Y. Hashimoto, T. Iwasa*, T. Taketsugu, G. Seniutinas, A. Balčytis, S. Juodkazise, Y. Nishijima*, J. Comput. Chem., 40, 925-932 (2019).

2018

30. Supported binary CuOx−Pt catalysts with high activity and thermal stability for the combustion of NH3 as a carbon-free energy source
S. Kiritoshi, T. Iwasa, K. Araki, Y. Kawabata, T. Taketsugu, S. Hinokuma*, and M. Machida, RSC Advances, 8, 41491-41498 (2018).
29. Spiral Eu(III) Coordination Polymers with Circularly Polarized Luminescence
Y. Hasegawa*, Y. Miura, Y. Kitagawa, S. Wada, T. Nakanishi, K. Fushimi, T.Seki, H. Ito, T. Iwasa, T. Taketsugu, M. Gon, K. Tanaka, Y. Chujo, S. Hattori, M. Karasawa, and K. Ishii, Chem. Commun., 54, 10695-10697 (2018).
28. Insights into Geometries, Stabilities, Electronic Structures, Reactivity Descriptors, and Magnetic Properties of Bimetallic NimCun-m (m = 1, 2; n = 3-13) Clusters: Comparison with Pure Copper Clusters
R. K. Singh, T. Iwasa, and T. Taketsugu*, J. Comput. Chem., 39, 1878-1889 (2018).
27. Time-Dependent Density Functional Theory Study on Higher Low-Lying Excited States of Au25(SR)18
M. Ebina, T. Iwasa*, Y. Harabuchi, T. Taketsugu*, J. Phys. Chem. C, 122, 4097-4104 (2018).
26. Twist of C=C Bond Plays a Crucial Role in the Quenching of AIE–Active Tetraphenylethene Derivatives in Solution
K. Kokado*, T. Machida, T. Iwasa, T. Taketsugu, and K. Sada*, J. Phys. Chem. C, 122, 245-251 (2018).

2017

25. Optical readout of hydrogen storage in films of Au and Pd
Y. Nishijima*, S. Shimizu, K. Kurihara, Y. Hashimoto, H. Takahashi, A. Balčytis, G. Seniutinas, S. Okazaki, J. Juodkazytė, T. Iwasa, T. Taketsugu, Y. Tominaga, and S. Juodkazis, Opt. Express, 25, 24081-24092 (2017).
24. Development of Integrated Dry–Wet Synthesis Method for Metal Encapsulating Silicon Cage Superatoms of M@Si16 (M = Ti and Ta)
H. Tsunoyama, H. Akatsuka, M. Shibuta, T. Iwasa, Y. Mizuhata, N. Tokitoh, and A. Nakajima*, J. Phys. Chem. C, 121, 20507–20516 (2017).
23. A Designer Ligand Field for Blue-green Luminescence of Organoeuropium(II) Sandwich Complexes with Cyclononatetraenyl Ligands
K. Kawasaki, R. Sugiyama, T. Tsuji, T. Iwasa, H. Tsunoyama, Y. Mizuhata, N. Tokitoh, and A. Nakajima*, Chem. Commun. 53, 6557-6560 (2017).
22. Luminescent Mechanochromic 9-Anthryl Gold(I) Isocyanide Complex with an Emission Maximum at 900 nm after Mechanical Stimulation
T. Seki*, N. Tokodai, S. Omagari, T. Nakanishi, Y. Hasegawa, T. Iwasa, T. Taketsugu, and H. Ito*, J. Am. Chem. Soc. (Communication), 139, 6514-6517 (2017).

2016

21. Multiple-decker and ring sandwich formation of manganese–benzene organometallic cluster anions: MnnBzn (n = 1–5 and 18)
T. Masubuchi, T. Iwasa, and A. Nakajima*, Phys. Chem. Chem. Phys. 18, 26049-26056 (2016).
20. Generalized theoretical method for the interaction between arbitrary nonuniform electric field and molecular vibrations: Toward near-field infrared spectroscopy and microscopy
T. Iwasa*, M. Takenaka, and T. Taketsugu, J. Chem. Phys. 144, 124116 (2016) [8 pages].

2015

19. Heterodimerization via the Covalent Bonding of Ta@Si16 Nanoclusters and C60 Molecules
M. Nakaya, T. Iwasa, H. Tsunoyama, T. Eguchi, and A. Nakajima*, J. Phys. Chem. C, 119, 10962-10968 (2015).

2014

18. Experimental and theoretical studies of the structural and electronic properties of vanadium-benzene sandwich clusters and their anions: VnBzn0/- (n=1-5) and VnBzn-10/- (n=2-5)
T. Masubuchi, T. Iwasa, and A. Nakajima*, J. Chem. Phys. 141, 214304 (2014) [8 pages].
17. Formation of a superatom monolayer using gas-phase-synthesized Ta@Si16 nanocluster ions
M. Nakaya, T. Iwasa, H. Tsunoyama, T. Eguchi, and A. Nakajima*, Nanoscale, 6, 14702-14707 (2014).
16. Liquid-Phase Synthesis of Multidecker Organoeuropium Sandwich Complexes and Their Physical Properties
T. Tsuji, N. Hosoya, S. Fukazawa, R. Sugiyama, T. Iwasa, H. Tsunoyama, H. Hamaki, N. Tokitoh, and A. Nakajima*, J. Phys. Chem. C 118, 5896-5907 (2014).
15. Physical properties of mononuclear organoeuropium sandwich complexes ligated by cyclooctatetraene and bis(trimethylsilyl)cyclooctatetraene
T. Tsuji, S. Fukazawa, R. Sugiyama, K. Kawasaki, T. Iwasa, H. Tsunoyama, N. Tokitoh, and A. Nakajima*, Chem. Phys. Lett. 595-596, 144-150 (2014).
14. Formation and Control of Ultrasharp Metal/Molecule Interfaces by Controlled Immobilization of Size-Selected Metal Nanoclusters onto Organic Molecular Films
M. Nakaya, T. Iwasa, H. Tsunoyama, T. Eguchi, and A. Nakajima*, Adv. Funct. Mater. 24, 1202-1210 (2014).

2013

13. Electronic and Optical Properties of Vertex-Sharing Homo- and Hetero-Biicosahedral Gold Clusters
T. Iwasa, K. Nobusada, and A. Nakajima*, J. Phys. Chem. C 117, 24586-24591 (2013).
12. Geometric, Electronic, and Optical Properties of Monomer and Assembly of Endohedral Aluminum Superatomic Clusters
T. Iwasa and A. Nakajima*, J. Phys. Chem. C 117, 21551-21557 (2013).
11. Geometric, electronic, and optical properties of a boron-doped aluminum cluster of B2Al21: A density functional theory study
T. Iwasa and A. Nakajima*, Chem. Phys. Lett. 582, 100-104 (2013).

2012

10. Experimental and theoretical studies on the electronic properties of vanadium-benzene sandwich cluster anions, VnBzn+1 (n = 1-5)
T. Masubuchi, K. Ohi, T. Iwasa and A. Nakajima*, J. Chem. Phys. 137, 224305 (2012) [9 pages].
9. Geometric, Electronic, and Optical Properties of a Superatomic Heterodimer and Trimer: Sc@Si16-V@Si16 and Sc@Si16-Ti@Si16-V@Si16
T. Iwasa and A. Nakajima*, J. Phys. Chem. C, 116, 14071-14077 (2012).

2011

8. Theoretical Investigation of a Titanium-Aniline Complex with and without an Alkyl Chain
T. Iwasa, K. Horiuchi, M. Shikishima, Y. Noguchi, S. Nagaoka, and A. Nakajima*, J. Phys. Chem. C 115, 16574-16582 (2011).

2010

7. Near-field-induced optical force on a metal particle and C60: Real-time and real-space electron dynamics simulation
T. Iwasa and K. Nobusada*, Phys. Rev. A, 82, 043411 (2010) [6 pages].
6. Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster
Y. Negishi*, W. Kurashige, Y. Niihori, T. Iwasa and K. Nobusada*, Phys. Chem. Chem. Phys., 12, 6219-6225 (2010).

2009

5. Nonuniform light-matter interaction theory for near-field-induced electron dynamics
T. Iwasa and K. Nobusada*, Phys. Rev. A, 80, 043409 (2009) [11 pages].

2007

4. Oligomeric Gold Clusters with Vertex-Sharing Bi- and Triicosahedral Structures
K. Nobusada* and T. Iwasa, J. Phys. Chem. C (Letter), 111, 14279-14282 (2007).
3. Gold-thiolate core-in-cage cluster Au25(SCH3)18 shows localized spins in charged states
T. Iwasa and K. Nobusada*, Chem. Phys. Lett. 441, 268-272 (2007).
2. Thiolate-Induced Structural Reconstruction of Gold Clusters Probed by 197Au Mossbauer Spectroscopy
K. Ikeda, Y. Kobayashi, Y. Negishi, M. Seto, T. Iwasa, K. Nobusada, T. Tsukuda*, and N. Kojima*, J. Am. Chem. Soc. (Communication), 129, 7230-7231 (2007).
1. Theoretical Investigation of Optimized Structures of Thiolated Gold Cluster [Au25(SCH3)18]+
T. Iwasa, and K. Nobusada*, J. Phys. Chem. C, 111, 45-49 (2007).

著書・総説・解説

3. “計算化学研究におけるスパースモデリングの応用”, 岩佐豪, 小林正人, 武次徹也 ケモインフォマティクスにおけるデータ収集の最適化と解析手法(第3章第2節), (株)技術情報協会, 92-100 (2023).
2. “第一原理計算による近接場光と分子の相互作用”, 岩佐豪, 光学, 50(3), 120-126 (2021).
1. “注目の論文 ナノの光を使った化学反応:STM探針先端のプラズモン場に光を閉じ込める”, 岩佐豪, 月刊「化学」, 75(10), 60-61 (2020).

その他

3. “局在した光と分子”, 岩佐豪(号担当), CanAppleニュースレター, 第276号(2024.01.05).
2. “特集:光と分子の相互作用”, 岩佐豪(号担当), 理論化学会誌「フロンティア」, 3(4), 205-257 (2021).
1. “ヘテロ接合積層体及び受光素子”, 中嶋敦, 角山寛規, 岩佐豪, 赤塚紘己, 日本, 2012年4月9日, 特願2012-88325.

ページトップへ